
A D-A159 216 THE INTERACTIVE GENERATION OF ALPHANUNERICS AUG 113
SYMBOLOGY WI1TH DESIGNS ON THE FUTURE(U) AIR FORCE INST
OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI NL

UNCLAS6SIFFIED K A ADAMS JUN 85 AFIT/GCS/MR/85J-2 F/G 9/2 N

I EE~hhEhhEE

I lff..l~ll.jff

1.0 We.6 L

.4M I0~i IV

MjRMP REOUNTS CHART
ue&?IO*M. @UfU OF STANDARO -1g4) A

* *%

rPnnnticrtn AT GOVERNMENT rWPFNSE

' pV

% .J

THE INTERACTIVE GENERAIJUN U-
ALPHANUMERICS AND SYMBOLOGY WITH

DESIGNS ON THE FUTURE

THESIS

AFIT/GCS/MA/85J-2 Karyl A. Adams

4% DTIC,
This document has been app@odM
J-.i |ot public release and sale; its iE 985

.. 4 disuibution is unuzmit*d. S

_ DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force base, Ohio

w P W, I r * ki

AFITIGCS/MA/85J- 2 ~i

A DISPLAY ENVIRONMENT SUPPORTING
THE INTERACTIVE GENERATION OF

ALPHANUMERICS AND SYMBOLOGY WITH
DESIGNS ON THE FUTURE

THESIS

AFIT/GCS/MA/85J-2 Karyl A. Adams

DT C
SP18966

A

Approved for public release; distribution unlimited

plta Al *:s0001

log Wl eIIbr9*d,,
w ies l ck an

I Z- % %u

AFIT/GCS/MA/853- 2

A DISPLAY ENVIRONMENT SUPPORTING THE INTERACTIVE GENERATION
OF

ALPHANUMERICS AND SYMBOLOGY
WITH

* DESIGNS ON THE FUTURE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Aec6ssion For

uN GA&Z

DTXC TAB

Juastification
Karyl A. Adams, BSEE

By
Di stribution/
Availability Codes

!Avaij and/or
Dit I p-cial

June 1985

Approved for public release; distribution unlimited Gi0O

Acknowledgments

This thesis effort has evolved from several sources.

The most significant driver for the work was the many long,

frustrating hours spent developing HUD symbology for Flight

Dynamics Laboratory simulation programs. Typical software

development to support the simulations required much

hand-coding, normally adding, deleting, or modifying existing

modules. The existing software structure at the time was

poorly designed from the standpoint of re-useability. The

majority of time was indeed spent doing trivial, almost

mindless work.

A colleague of mine, Mr. Terry Christian, who had

worked extensively with the available graphics system, and I

discussed ways to improve our plight. Out of those

discussions, the first germ of an idea to structure the

software modules for true re-useability was born.

A second critical event that started my thinking toward

ever more challenging goals was the time I spent in the

compiler sequence with Major (then Capt) Role Black working

with implementing a subset of an Ada compiler. Major Black

is an ardent advocate for making computers actually 'work'

for you. His thoughts and ideas on the subject of automating

massive software systems was, to say the least, inspiring and

iti

thought provoking.

Because of my interest, and heavy involvment, in

graphics development in my full-time job and my growing

attraction to automated tools, the idea for DESIGNS was

formulated. Major Black continued his support by becoming

the advisor for my thesis effort. Throughout the time he was

at AFIT, he continually provided me with challenging ideas

and recommendations for the concept.

As a part-time student completing a master's degree

program, the thesis often posed an interesting conflict with

my day to day work. The development effort has been quite

prolonged, and as a result has changed significantly over the

two and a half year period. It has been an interesting

maturation period, both for the concept of the thesis and

myself. The final thesis product, while far from a complete

automatic environment, I feel is a stronger design and set of

tools than it would have been otherwise.

During this period of time there have been many

individuals who, by their continuing encouragement and

support, have helped me to stick with and complete my thesis.

I wish to thank Major Role Black for the Inspiration of his

ideas and his steady encouragement to FINISH. Special thanks

also to Mr. Terry Christian and his willing ear to listen to

my ideas, and help me to see when they did, and didn't,

address the needs of our facility.

iv

% * % % . % , -B. -b ..

" ."." ." ?. ," " -" " ' r % . b .*.- - - .-.- - .- ,-.o - -..-.-

I would also like to thank the readers on my committee.

: ' Dr. Matthew Kabrisky and Mr. Paul E. Blatt gave of their

time to provide information and comments on the thesis

development. Mr. Blatt, as the branch chief of the Control

Synthesis Branch, also served as the official sponsor for the

effort.

There is a group of people to whom I owe a great deal in

actually completing my master's program. The first is Mr.

David Lair. Dave was my supervisor in the lab and supported

my educational endeavors whole-heartedly. Without his

support, it would have been impossible to have scheduled

classes and thesis around the demands of the facility.

The second special thanks goes to Mr. Chuck Richard.

He was initially a reader on my committee, and willingly

stepped in as advisor when Major Black was reassigned. This

• :required much more of his time and efforts to get caught up

to speed on a development effort that was over a year old. I

deeply appreciate his patience and understanding as he has

guided me to completing the thesis.

Another source of strong support came from my friend and

colleague, Capt Patricia Lawlis. She has encouraged when I

was ready to quit, pushed when I was being lazy, and of equal

importance, left me alone when I was too fed up to listen.

Without her encouragement, this effort may never have been

finished.

v

My final sincere thanks go to my family, particularly my

mother and sister. They have provided constant emotional

support throughout the effort. Their kind thoughts and

prayers have meant much.

Without each of these people, I may never have finished

what was a prolonged task. In completing the effort, I think

of each of you and thank you for your support.

Karyl A. Adams

Al

4.i

-°

..

°

d

• Vi

Contents

Page

Acknowledgmentse. e.g

List of Figures x

List of Tables . xii

List of Acronyms xiii

Abstract xv

*I. Introduction I

Historical Background 6
Scope of the Thesis 11

* ~Overview of Technical Isues ; 16

11I. Graphics in R A D Simulation 21

The Potential for Cockpit Integration 26
Cockpit Display Evaluation 29
Graphics Support Environments 31

III. Problem Definition 34

*The Software Development Cycle 34
A Case Study 35
The Operational Environment 45
Statement of the Problem 47
Constraints of the Problem 49

IV. DESIGNS Requirements 54

Synopsis of Requirements 54
The DESIGNS User Interface 56
The DESIGNS Toolbox 59
The DESIGNS Interpreter 64
The DESIGNS Facility 70
Summary of Functional Reurmns......73

vit

V. The DESIGNS Implementation 78

Facility Description 79
The Software Development Cycle 80
The DESIGNS System Specification 83
The DESIGNS User Interface. 84
The DESIGNS Toolbox. 91
Critical Tools Implemented : : 96

The Graphics Executive Program 98
The VG Database Definition 101
The PACER/VG 'Auto-Build' System 109

VI. Testing the DESIGNS Concept 112

VII. Conclusions and Recommendations 115

Conclusions 115
Recommendations 118
Future Directions for DESIGNS 122

Bibliography . 123

Appendix A - Simulation Topics 129

HUD Symbology 131
HOD Symbology 132

Appendix B - Human Factors Issues 138

Guidelines for User Interface Design 140
User or Designer Goals - An Avoidable Conflict 142
User/Machine Dialogue Characteristics 145
Selection of the Dialogue Type 150

Appendix C - Hardware/Software Integration Issues . . 155

Overview of Critical Hardware Issues 156

Typical Workstation Capabilities 157
Target Device Interfaces 160
Selection of Host Computers 162

Overview of Critical Software Issues 163

Graphical Data Structures 165
Graphics Standards 169
Software Techniques to H;ndle Di;logues . . 173

viii

The Impact of Fourth Generation Languages . 177

Algorithms for Graphical Tools 178

Appendix 0 - SADT Diagrams 180

Appendix E - DESIGNS Pseudocode 186

Appendix F - DESIGNS User Guide 197

Appendix G - Requirements for GRAFEXEC 201

Appendix H - Formal GRAFEXEC Documentation 203

* ix

t~~~- --A..L--.t - - - - - - - k- K.

List of Figures

Figure Page

1. Futuristic All-Electronic Transport Flight Deck . 3

2. Advanced Fighter Display Concepts 4

3. Representative Displays in Service Today 8

4. Graphic Replacements for Dedicated Control Heads -
An Evolutionary Process 10

5. Conceptual Model of DESIGNS 14

6. Crew System Design Process 22

7. Strategic Bomber Capabilities - Circa 1990 24

8. Advanced Concept Fighter Mission 25

9. TSD in Monochromatic Stroke 37

10. Stores Display in Monochromatic Stroke 38

11. Procedural Display in Monochromatic Stroke 38

12. TSD in Color Stroke 39

13. Stores Display in Color Stroke 40

14. Procedural Display in Color Stroke 41

15. TSD in Color Raster 42

16. Stores Display in Color Raster 43

17. Procedural Display in Color Raster 44

18. Typical Cockpit Display Configuration 72

19. The Generic DESIGNS Menu Format 87

20. A Typical DESIGNS Symbolic Menu 88

x

...............................

21. The DESIGNS Main Menu 89

22. Excerpt from VG Module, Illustrating Pointer Use . 103

23. Sample Code for a Static VG Module 106

24. TF/TA HUD Symbology 130

25. CIG Symbology 134

26. ASP Ring Data Structure Implementation 168

27. Entry Level of DESIGNS - System Startup 181

28. DESIGNS Menu Option Processing 182

29. DESIGNS Option Selection Processing 183

30. DESIGNS Interpreter Activities 184

k4

xi

p.-

List of Tables

Table Page

I. Functional Capabilities of the DESIGNS Graphics
Editor 60

II. Assignment of Static and Dynamic Attributes . . 61

III. Functional Capabilities of the DESIGNS Symbol
Librarian 62

IV. Integration and Support Areas 63

V. Functional Capabilities of the DESIGNS Interpreter
. 0 0 0 0 0 0 0 * a65

VI. Effects of Display Encoding Techniques 151

VII. Menu Driven vs Command Language Based Dialogues 153

VIII. Semantics Permitted in Early Picture Building
Systems 170

xii

List of Acronyms

ACM Association for Computing Machinery, Inc.

AFTI Advanced Fighter Technology Integrator

AFWAL Air Force Wright Aeronautical Laboratories

AMRL Aerospace Medical Research Laboratory

ANIP Army/Navy Instrumentation Program

ANSI American National Standards Institute

APSE Ada Programming Support Environment

ASCII American Standard Code for Information
Interchange

ASP Associative Structure Package

CAD Computer Aided Design

CADET Computer Aided Design and Evaluation
Techniques

CAM Computer Aided Manufacturing

CIG Computer Image Generation

CRTs Cathode Ray Tubes

00I Digital to Digital Interface

DESIGNS Display Environment Supporting the
Interactive Generation of
alphaNumerics and Symbology

EADI Electronic Attitude Direction Indicator

EAI Electronic Associates Incorporated

EHSD Electronic Horizontal Situation Display

GKS Graphical Kernel System

4

- ' xii

Z

HDDs Heads Down Displays

HOL Higher Order Language

HUDs Heads Up Displays

I/0 Input/Output

ISO International Standards Organization

LEDs Light Emitting Diodes

NALPS North American Presentation Level
Protocol Syntax

PITS Pathway in the Sky

R & D Research and Development

SADT Structured Analysis and Design Technique

SDS Symbology Development System

SEL Systems Electronic Laboratories

SIGGRAPH Special Interest Group in Graphics

TAACE Tanker Avionics and Aircrew Complement Evaluation

TAWS Total Aircrew Workload Study

TDD Three Dimensional Drawing

TF/TA Terrain Following/Terrain Avoidance

THREAD Three Dimensional Editing and Drawing

TSDs Tactical Situation Displays

VDI Virtual Device Interface

VG Vector General

4GLs Fourth Generation Languages

xiv

111117 .

Abstract

>This dev*zopment t investigated the available

methods for implementing human-computer interfaces using

sophisticated graphics systems, with the goal of designing

and implementing an advanced graphics development

environment. Such a developmental laboratory is necessary to

support current and futuristic crew station design for

display-oriented cockpits. The result of this effort was

the development system - DESIGNS.

The DESIGNS software system was tailored specifically

for real-time, pilot-in-the-loop, research and development

simulation. Critical features of such a system include fast

turn-around time, and the capability to expand as enhanced

tools are developed.

The resulting system supports interactive development of

heads-up and heads-down display symbology. It generates

correct display formatting information for multiple target

graphics devices. Future enhancements include rehosting to a

more powerful workstation, preferably in Ada, and continued

addition of graphics development tools supporting simulation

needs.----- ., - (-_ -4

- *t*."-'

" % ?~S: '".~. ~ . - - -xv-

~ ~~ ~ ~~~~~~~ nmJ 11Iliiid ll...

A Display Environment Supporting the Interactive Generation
of

alphaNumerics and Symbology
with

DESIGNS on the Future

I. Introduction

Powerful computers and software techniques have

made most computer users dream of 'pleasant' working

environments In which the computer does much of the work.

Such environments are designed with 'intelligence' in the

sense that they automate many of the overhead tasks involved

In the preparation of software packages. Users developing

graphics software are certainly no different. They also

envision computer supported environments, tailored to their

tasks, which provide interactive tools for the development,

modification, and testing of display formats.

Software capabilities have matured to such a point that

sophisticated environments, supporting all phases of

graphical development, can be postulated and then implemented

on existing computer systems. The maturity of the technology

is such that graphical development work can be raised to a

higher level than that of direct programming and

reprogramming of graphics hardware. Picture format

definition, how the final version of the picture looks and

moves on a display monitor, can be accomplished at a more

. ., . .:; . ., .. .% /. : .', / :: ' , . , ? ¢ ? . . , . , . . . ,.-... .
J ' I 1 - , q q t % * * ,

abstract design level with the appropriate support tools.

With graphics support tools available, the designer can, and

in most cases should, be removed from the numerous mundane

tasks of final software coding. Then attention can be

focused on the critical issues of defining those elements to

be included within the picture format and testing the

resultant graphical displays for adherence to the original

specifications [Dudley, 1982 : 54).

Rapidly maturing graphics capabilities offer many

attractive alternatives for traditional problem solutions.

One area in which graphics is having a serious impact, is

that of cockpit design for military aircraft. The military,

in particular the Air Force, is evaluating the feasibility,

economy, and effectiveness of using extensive cockpit

graphics [Mulley, 1980 : 14-15; Vokits and Waruszewski, 1980

4-8].

Future Air Force cockpit designs will include cathode

ray tubes (CRTs), flat panel, light emitting diode (LED), and

other advancing technologies. The all-electronic cockpit of

the future is being tested today. Figures 1 and 2 illustrate

futuristic transport and fighter flight deck configurations,

and depict the potential dominance of graphical displays

within the aircraft environment [Wilson and Bateman, 1979 :

10].

2

N* .

* * * . - B

~ C. ~ .. '. I,. ~ .. T.7IW~ ~ - ~ ---- ~ - - .~* - - - - -

U

- 0

-/ 0)
-4

La~

0

U)
C

I.-

U
-4

C
0

U
a,

-4

UJ

-4

U
-4

4.)
U)

5-

U-

'U-

w

-4

Ls~

%* **

3

S.....

4-40

Displays can replace much of the current instrument

panel and increase system reliability and maintainability.

The inherent flexibility of displays provides a mechanism for

increasing aircraft subsystem integration, thus decreasing

the pilot workload and improving mission performance

[Aviation Week Staff, 9 Nov 1981 : 181-188, 191-193; Bateman,

1978 : 4-10; Hare, 1978 : 17-19; Washburn and Tibor, 1979;

Whitaker, 1981 : 505-510].

With the new graphics oriented technology come the

inevitable questions. The hardware installed in military

weapon systems and the software systems driving them require

careful design to maximize their potential In the cockpit.

Human use and perception of the data encoded in the display

become critical [Mulley, 1980 : 15-18; Tucker, 1981 : 59-62].

Studies to determine how the hardware/software systems should

interact with crew members are being conducted in simulation.

Simulation facilities are therefore expanding

capabilities to include sophisticated graphics systems with

which to evaluate these issues. These systems can generate

complex threat, sensor, and navigation displays which are so

critical to military activities. Tools to support the

expanding graphics facilities and the intense software

development are needed and are, In many cases, rudimentary.

Intelligent graphics support environments, tailored for Air

Force simulation needs, provide the capability to improve

graphic development in several areas [Mysing and Gravely,

1980 : 37-38; Riesenfeld, 1978 : 115-122; Wall and others,

5

1980 : 19-120].

This thesis defines a complete graphics support

environment developed for use in real-time flight simulation.

A subset of the defined tools, focusing on the actual

preparation of software for Heads-Up Displays (HUDs), is

implemented. The completed product provides a highly

Integrated, Interactive environment in which the user has

access to an extensive toolset, tailored for simulation

needs. From the toolset the user selects those capabilities

necessary to accomplish any phase of the graphics development

task at hand. The capabilities and tools discussed here are

an outgrowth of the phenomenal accomplishments in graphics

and computer languages over the past two decades.

Historical Background

With the advent of Ivan Sutherland's doctoral

dissertation, "Sketchpad", in 1963, a new avenue for

human/computer communication was opened. Sutherland

perceived that the added dimension of a graphics display

could provide significant benefits for the user. The

Sketchpad design explored, defined, and expanded this new

communications device. Its use marked the beginnings of

serious graphics development [Sutherland, 1963 : 2-19].

From the relatively simple line drawing techniques and

cumbersome display hardware introduced with Sketchpad,

advances in both software and hardware have provided

6

'p

increasingly powerful graphics tools. Today, graphics use

extends into numerous areas of endeavor, including games,

business use, and technical support.

In the past few years graphic displays have made their

way into the aircraft cockpit. Improving technology, with

greater system speed and larger, faster memory, makes

in-cockpit graphics a practical and economic way to display

flight related information. Diversity of formats, which can

be tailored to the mission activity and aircraft need, opens

new horizons for data display. No longer must dedicated

pieces of hardware, performing a single function, be used

[Jauer and Quinn, 1982 : 1-6].

Applications of display technology in the civil aircraft

sector have been extensive. Notable efforts include the

Boeing 757/767 series aircraft with a complete complement of

graphics units for instruments, weather radar, navigation,

and system monitoring; and Britain's Royal Aircraft

Establishment BACI-II research aircraft which is a flying

testbed for high resolution, full-color, multi-function

display systems. Many commercially available display units

from Rockwell-Collins, Sperry Flight Systems, Bendix, Smiths

Industries, and others are flying in both American and

foreign airlines [Royal Aircraft Establishment, 1981 : 1-12;

Smiths, 1980 : 27-33]. The Electronic Horizontal Situation

Display and Electronic Attitude Direction Indicator

(EHSD/EADI) symbology shown in Figure 3 is typical of color

displays available and in use [FIGD, 1982].

7

: . :.. *. ,. ,-.* . ',, *.,,. ,..., f *... -. .. , .,. *,* , .. ., *, .,*

-'W-7v --. -7-.- -- i- V ; -36 - - - : - - - - - - - , - -1 . k- -- ,g, , -.7 -

ELrCTRONI(; AT 117UOE DinrcTon INDICA1011 (rAI)I)

OH200
GS190

12000
F

-0
0

00 DIN
0
0

CMD

L 0 C

9. 7W TPx H 13X. 32

IfFNNA

VC

40 KOHC

C VAVL
0

q V LI I 'o
VOAK 0

FL

0

0
20

0 0 0 0 00

el" I,-

ELECTRONIC HORIZONTAL SITUATION INDICA10" (rimo

FIGURE 3 Representative Displays in Service Today

8

..-. 07W Tr-'

The military ventures to date have been more cautious

[Vokits and Waruszewski, 1980 : 4). However, as tactical

missions grow in complexity, the use of computer based

cockpits with graphics has increased. Both the F/A-18 and

the F-16 are using some form of displays for system

management information. The formats for these displays have

evolved more cautiously, often strongly resembling the

dedicated equipment which they replace. Indicative of this

evolutionary process are the different 'displays' used in

three fighter aircraft for weapons control that are shown in

Figure 4 [Jauer and Quinn, 1982 : 1-2; AFT!, 1980 : 1-5).

The displays within the cockpit have successfully replaced

older, existing equipment. The enhanced capabilities have

been well received by crewmembers. Cockpits for future

military aircraft are therefore being designed with computer

graphics included as standard equipment.

Escalating costs of flight test programs require that

preliminary research, design, and testing of display formats

be done in ground-based simulation facilities prior to use in

the actual flight environment. Displays must be evaluated to

determine both their effectiveness in transferring data to

flight crews and their practicality for the cockpit. Such

design and testing efforts require extensive graphics support

[Jauer and Quinn, 1982 : 118-119; Lizza and others, 1983 :

1-5).

r9

%***r**,%*** * *****~* - . .
** - *-.*-.-**-- :.- *

* .- -l . i & !- •-uI......- --- . .- , - -- •- -U

o -r... ARMAMENT"i _o _ ..

00

.....O~ni -- J,_ F-16

SJ ECTms - T0. + (i ~
uF,7 0 00 0~ F-18

- T=..+~O~ 0 0 004 D

l l r l , - '" ASU

, FUEI LOP I A PITOT NT L GEN

FIGURE 4
Graphic Replacements for Dedicated Control Heads -

An Evolutionary Process

The key for effective development of graphics during the

simulation testing cycle depends on having graphics support

tools available. The challenge of developing these tools is

of major import to the simulation community if it is to

provide timely support for in-cockpit graphics research at

lower cost.

10

Scope of the Thesis

One of the most important goals of the thesis effort was

to provide a more powerful, and more useable graphics

environment for the personnel working the graphics area of

real-time, pilot-in-the-loop, research simulation. Key to

this effort has been the definition of an executive structure

which serves to integrate available graphics tools, and the

definition of DESIGNS - Display Environment Supporting the

Interactive Generation of alphaNumerics and Symbology.

The executive provides a super-structure which loosely

integrates all available graphics tools within the facility.

DESIGNS is the most complex, and significant of these tools

as it provides the potential for a revolutionary new way of

developing real-time simulation graphics in the future.

The function of the DESIGNS environment is to assist

with the development of picture formats required for

real-time, ground-based flight simulation. To do this

successfully, DESIGNS must provide tools which augment,

automate, or eliminate some of the time consuming tasks that

currently must be accomplished by hand.

The typical scenario for developing and testing graphics

displays In simulation involves six major phases:

(1) determine initial requirements for cockpit
display(s), that is what scenes are to be put on
the display screen(s) in the cockpit,

(2) program the selected graphics system(s) to generate
and update the desired display(s),

.*-: (3) have test crews fly, using the display(s) in

.4-.

11

typical, simulated scenarios,

(4) modify the display(s) based on crew suggestions,

(5) retest the new display(s),

(6) repeat steps 4 and 5 until the desired level of
crew acceptance and performance has been met.

The bulk of the work lies in step 6, 'tweaking' the

display format until it is deemed acceptable. The initial

display design and software development often is a

modification of existing cockpit symbology, thus not a major

development. There tend to be accepted sets of symbols to

accomplish specified tasks. Variations on these sets, rather

than dramatically new symbology sets, evolve with new

testing.

This scenario, replayed for multiple simulations, soon

leads to tremendous replication of effort. Much of the work

is repetitive or purely computer related, requiring either

little innovation or no graphics design work. Significant

amounts of time can be required to modify program code and

process it to run with slight variations from the preceeding

configuration.

The purpose of a tool such as DESIGNS is to automate

those tasks which can be, provide tools to assist in the

design and eventual modification of displays, and provide a

consistent interface to the variety of tools and devices the

designer may have available. Thus the tools can reduce

development time and permit the designer to focus on design

issues rather than the mechanics of the computer and graphics

12

" "' "" . .. **.. " * *', , " ' "" " " " " " " " .. . "

hardware.
The Initial thrust of the DESIGNS effort is to provide

an alternative to the manual creation of display software for

simulation efforts of the type currently being undertaken.

This can be accomplished by providing automated tools which

perform the repetitive tasks, and support basic graphics

drawing primitives. Futuristic capabilities in the cockpit

lead to more complex graphics requirements, including

pictorial displays - the concept of 'painting a picture'.

The definition of DESIGNS supports this extension in theory,

but did not address it in detail during development.

Conceptually, DESIGNS is modeled as depicted in Figure

5. The user is presented with a view of the DESIGNS

capabilities (tools) through the user interface. This

interface provides the only window the user has into the

toolbox. Through the structure of the user interface, tools

may be discerned and then accessed. No attempt is made to

fully define the tools, except in terms of their behavior, to

the user. Therefore the only 'tool' the user must learn to

use is the interface itself. By using the tool set

available, the user can design, modify, and test displays

more easily and quickly.

Even further removed from the user are the actual

graphics devices that may be available through the DESIGNS

system. Again the user knows these devices in terms of

* information available through the user interface. DESIGNS

provides the device dependent software (interpreter) that

13

'.. ,. .[.. ..; 7 y. 1.'7?[:--' -, ,,,??, -

.--

USER INTERFACE INTO DESI GNS *

User Workstation Executive DESIGNS Dialogue

DESI GNS TOOLBOX
Gahc I * *

Graphics Support Symbol 0 ?? I• oIII
Editor Tools Library

'I'

DESI GNS INTERPRETER *
F 0 R

PRODUCTION OF TARGET SOURCE

4I

Device Device 'Device' Device1 2 ? n

FIGURE 5
Conceptual Model of DESIGNS

translates the user's graphics design specifications into a

format that a specific device can use. This portion of the

*• DESIGNS environment may not be directly accessed by the user,

as evidenced In the figure.

14

i7N

As Indicated by the figure and briefly discussed here,

the DESIGNS environment provides the user with a set of user

support tools. It provides a single, defined method for

using the tools, and requires no detailed knowledge of the

hardware or software systems in order to work with the tools.

. The only portion of DESIGNS visible to a user is this

* user/environment interface.

The set of tools provided to the user supports the many

* phases of graphics work. As a minimum these tools provide

*i aids for designing and modifying picture formats, with

*support to save and retrieve work that has been accomplished.

The concept provides a mechanism by which other tools can be

added to the toolbox as they are developed in the future.

The development and testing phases of DESIGNS served as

the proof of concept. Since the DESIGNS environment was too

extensive to develop in Its entirety, a portion, identified

as critical to the design concept, was implemented and

.. tested. A thread through the system, which directly supports

*- software development for HUDs, was selected as the candidate

-" for implementation. This effort Included issues of the user

" interface, a baseline set of graphics tools, and an

* interpretive mechanism for a single target device. Areas

which were developed as part of the research effort are

indicated In Figure 5 with an asterisk (*). This indicates

" the path through the system which was determined to be

* critical for success.

15

.... .. ". "" "* "" * ,"", •.. ,-..* ..- '..5 ". ' .. . *''P'.... - " . -- " " *.."." 5".* . '..... .. , ' * * '. .. * '***t.,... . *. . ,* . , . . ,. . , , , ,

* Overview of Technical Issues

Solutions which may potentially satisfy the graphics

development needs will not be found by considering only those

techniques available within isolated technical disciplines.

Developing the DESIGNS environment definition involved issues

* traditionally identified with several distinct technical

areas. A satisfactory solution for the design problem most

be defined from an interdisciplinary perspective addressing

four distinct areas.

This report is structured to discuss each of these

technical issues in detail as well as to provide the

- necessary supporting information. The second chapter

-explains the importance of graphics to Air Force research and

development simulation. Trends in the use of graphics in the

cockpit are discussed to provide a better perspective on the

problem.

The third and fourth chapters discuss problem definition

and requirements. Chapter three provides the details of the

- problem definition and scopes the effort proposed. Chapter

four defines the functional system requirements.

The actual implementation of a system having the

. functional capabilities specified, places a complex task in

the hands of the system designer. To accomplish such a task,

- several technical areas, such as real-time simulation, human

factors engineering, and computer systems engineering, must

be carefully analyzed. If any facet of the effort is

16

short-changed, the resulting tool will not be accepted by the

potential users. The DESIGNS system was developed based on

techniques and methodologies available within each of these

disciplines. The fifth and sixth chapters describe the

DESIGNS environment implementation and the testing of the

subset of DESIGNS tools.

The seventh, and final, chapter of the thesis presents

the author's conclusions regarding the effort to date and

critiques the effort with respect to the original goals. The

overall success and feasibility of extending DESIGNS is

discussed. Recommendations for future activities and

extensions to the DESIGNS environment capabilities are made.

Additional information, which supports the project

design, is presented in the appendices. This information

expands on the issues raised by the system requirements and

provides the basis of knowledge from which the preliminary

design was defined. Such knowledge improves the reader's

ability to understand the various design decisions, but is

not critical to system use.

Issues specific to the simulation needs that impact this

project are defined in Appendix A. Simulation questions

require insight and understanding of both real-time aircraft

simulation demands and cockpit design. Specific facility

needs and resources strongly tailor parts of the design.

These needs guide the definition of requirements and

capabilities. The available assets dictate what physical

devices must be supported.

17

A critical area that must be considered is the human

factors design of the system. The importance of the user

interface is discussed In Appendix B of the thesis. A

complete, technically correct set of graphics tools packaged

with a poor user interface Is of minimal use. The needs and

capabilities of the intended end user must be identified.

Once identified, these points determine the user interface

definition. Careful attention will be given to the efforts

in the area of fourth generation languages and the impacts

they have on both software and user interfaces.

The hardware and software issues pertinent to the design

definition of any system are often closely coupled. It is

frequently difficult to discuss one without referencing the

influence of the other. This is certainly true in discussing

the hardware and software technical issues which have helped

to mold the DESIGNS system definition. DESIGNS is a major

software design and implementation effort and as such has

been influenced by existing, proven techniques in the

graphics area. However, since the primary goal is to provide

development support for a plethora of dissimilar target

devices, the DESIGNS definition is heavily dependent on a

thorough understanding of the hardware capabilities. Both

current hardware capabilities and future growth potentials

must be understood.

It is necessary to look at each area in turn critically,

and then to discuss the integration of these closely related

* issues. Appendix C discusses pertinent hardware capabilities

18

and software techniques that affected the DESIGNS definition.

Key Issues concerning the hardware/software integration are

identified and their relevance to the effort detailed.

The methodology of Structured Analysis and Design

Technique (SADT) developed by Softech was used during the

design phase of the project. The resultant SADT diagrams

describing the detailed DESIGNS definition are contained in

Appendix D. This set of charts defines the entire postulated

environment. There is more detail contained within those

charts defining the implemented subset of DESIGNS than in

those defining future capabilities.

Pseudocode was used to develop the design of the

software modules. This serves both as a design tool and as

documentation for the system. Appendix E contains the

pseudocode that was developed for the tools actually

implemented.

A user's guide for the DESIGNS system is also provided.

This guide, which is included as Appendix F, provides a step

by step description of how to use the software. It documents

those tools which have been developed and tested to date.

As discussed previously, one of the important outgrowths

of the thesis was the definition and development of a high

level executive program which serves to integrate all the

graphics tools available within the host facility. While

this executive is nnt the focal point of the thesis, it is an

important outgrowth of It. To provide more complete

references, Appendices G and H contain information specific

. 19

-. * .

to the graphics executive that was developed in parallel with

DESIGNS.

20

*- *- -- - - - t -. -- -7 -..

I. Graphics in R & D Simulation

To understand the need for the DESIGNS system, it is

necessary to understand the role of graphics development and

testing in simulation. Real-time, man-in-the-loop simulation

is a useful tool for aircraft development and evaluation.

Simulation activities are supported by, and based on the

design and evaluation efforts that precede them.

The activities that precede simulation have been

carefully defined and refined over the last several years.

The accepted procedure, in government and industry alike, is

an iterative one consisting of analysis, design, and

evaluation phases. Low-cost, mock-ups study static display

formats in an attempt to lower costs of real-time simulation.

The design process used in developing a crew system

design is illustrated in Figure 6. Not all steps of this

process are executed for every program, but the philosophy of

analysis, design, and testing are critical. There is a very

real need to provide good graphical tools to support the

various phases of this design process.

The increased need for graphic related software in

simulation can be seen from the nature of the design process.

The use of graphical representations within the aircraft

cockpit is not new. The historic use of graphics in the

cockpit, coupled with a brief description of the potentially

demanding roles graphics may support in the near future,

develops an appreciation for the DESIGNS concept.

21

FIGURE 6 - Crew System Design Process

W am

iii
i-x

L22

Ix

. .. >

..,.. . S *.

z" 0

22

Work in cockpit displays began in the early 1950's with

the Army/Navy Instrumentation Program (ANIP). The ANIP goal

of integrating the fighter cockpit was never realized

primarily due to the rudimentary technology available at the

time. The display system performance was notably inferior to

pilot expectations and was not accepted. Strong prejudice

among pilots involved in the project seriously hindered

future attempts to introduce graphics as an integral portion

of cockpit instrumentation (Quinn, 1982 : 1, 62].

Since the original trial efforts, much has changed with

available technology and military needs. Today's airplanes

have greatly improved performance capabilities with seemingly

unlimited potential. They are tasked with increasingly

demanding mission roles. As mission scenarios become more

4D demanding and the aircraft more complicated to operate, the

amount of data to be properly evaluated by the crew members

increases accordingly.

Typical mission scenarios for large aircraft (bombers

and transports) and high performance fighters are grueling.

They demand periods of intense mental activity on the part of

crewmembers to accomplish critical tasks. Bomber missions

can require long flight hours, involve numerous rendezvous

points with other aircraft, with various weapons launches as

illustrated in Figure 7. The fighter mission, as depicted in

Figure 8, can involve high-speed terrain following/terrain

avoidance (TF/TA), threat avoidance, plus aquisition and

Identification of enemy targets.

23

V, 1>1

N N

\t!A\

i~ V.

242

. .at
* . . *

* GKn

FIGURE 8 -Advanced Concept Fighter -Missio -n

UAA

* . . --. o . 4, i. -. . , , t . .;. - -

In order to accomplish these missions, tactical and

flight related data must be recognized, comprehended, and

responded to by the crew. Mission success and safety depend

on the timely, and proper, execution of each critical mission

phase.

During times of high workload this data can be poorly,

or incorrectly, interpreted thus compromising the mission,

with the potential for loss of life and property. Methods to

improve the tranfer of data to the crew are essential. Once

again, graphical displays are being considered as a tool to

provide cockpit integration [Mulley, 1980 : 14-15;

Ropelewski, 1982 : 39-46].

The Potential for Cockpit Integration

Providing useful, integrated data to a flight crew

requires a thorough understanding of the tasks to be

accomplished in a given mission scenario. Determining

limitations of crews and equipment is a major concern for the

Air Force. One way to evaluate the limits within an entire

aircraft system is to fly typical mission profiles in

simulated combat or emergency conditions. Research studies

using simulation have determined the percentage of time the

individual crew members spend on specific tasks and pertinent

mission phases such as take-off, communications, navigation,

radar tracking, etc. These studies identified factors that

assist and hinder the crew as they work on tasks. By using

26
A

.' -. . . . _' -. .. .- -.. •W..- . . . ,.-. . ,. . -.~ : *-,-..- .- ..* * -

simulation, controlled experimental mission profiles with

intense workload situations (such as high communications

load, bad weather, and aircraft system failures) have been

flown and evaluated to determine the limits of performance of

the entire aircraft system [Lizza and others, 1983 : 4-5;

Moss and Barbato, 1980 : 2-5; Moss, 1980; Sexton and others,

1976a; Sexton and others, 1976c].

These workload study results indicate that the limiting

factor in the cockpit may be the pilot and the inability to

deal with overwhelming streams of data. The volume of data

which must be recognized and processed in the tactical

environment can be too extensive to be properly and

consistently evaluated over the course of a demanding

mission. Much of the data available requires a significant

amount of human processing time to be interpreted. In a
J

worst case scenario with high workload, much data is lost due

to a lack of this processing time [Boeing, 1983; Sexton and

* others, 1976b].

An obvious conclusion is to provide some sort of

assistance to the crew by preprocessing at least some of the

data. By reasonably integrating the many data elements, the

crew will need to process less. Traditional cockpit design

does not support this integration well. Often there Is

little regard for an efficient and effective cockpit

interface to the crew even though proper cockpit design is

critical if the pilot is to properly use the data available.

27

A . *.-~ 0 *S ~ ~ *R~% . S

Current trends promote the concept of an integrated

cockpit. No longer are aircraft subsystems such as the

flight control, weapons control, and trajectory control

completely segregated. Issues of combining technologies are

receiving critical attention. Integrated cockpit design

concepts provide essential guidelines for the proper

management of the modern cockpit. In an integrated cockpit

environment the crew would no longer have to look at several

instruments to synthesize a mental picture of what is

occurring within and surrounding the aircraft. The cockpit

instrumentation would be designed to provide the 'big

picture' of the aircraft's situation with a minimum of

separate displays.

Electronic graphics display technology offers great

promise for integrating cockpit functions. Maturing

technology provides an unprecedented potential and

flexibility for designing sophisticated aircraft systems

based around graphics displays. This inherent flexibility

and extensibility of graphics displays provides an almost

obvious mechanism for increasing cockpit integration. By

capitalizing on the flexibility, display formats can be

optimally designed for each phase within a specified mission

profile, as well as for many of differing military missions.

Optimization and system integration are not penalty free

products, however. The designer of formats faces two rather

formidable tasks. The first is the development of

'optimized' formats. Unfortunately there is no quantifiable

28

* measure of optimal. The second task is equally difficult and

involves the validation of the format's information content

and the proper transferral of that information to the crew

member. It is one thing to build an electronic cockpit. It

is quite another for that result to work effectively in a

mission role. All of these areas require careful study and

analysis [AFWAL/Flight Dynamics Laboratory, 1982 : 22-31,

59-69; Curry and Wiener, 1980 : 22-26].

Cockpit Display Evaluation

Government and contractor support organizations are

Interested in researching and directing the impact that

display technology has on future cockpit design. The most

notable participants are the major airframe manufacturers

(Boeing, Lockheed), key government facilities (NASA Langley,

NASA Ames, Air Force Wright Aeronautical Laboratories), and

the avionics vendors (Rockwell-Collins, Sperry, Smiths

Industries, Ferranti).

The research efforts at the Boeing, Lockheed, and

government facilities address three major graphics areas.

The areas of interest are the

(1) evaluation of display devices, formats, and
physical cockpit arrangements,

(2) evaluation of the limits of automation which can be
programmed into cockpit designs and still retain
the pilot as an effective system manager,

(3) in-depth study of the advanced display techniques
and technologies for both software and hardware
portions of the graphics system [AFWAL/Flight

29

iSt

. *•'- -.. - .- - , !

Dynamics Laboratory, 1982 : 59-69; Boeing, 1983;
Lizza and others, 1983 : 1-5; Moss, 1984; Sexton,
1983-4; Vokits and Waruszewski, 1980 : 4-8].

The evaluation tool for significant portions of the

research is ground-based flight simulation. Real-time,

man-in-the-loop simulation is used to Investigate the

critical areas of interest and to validate the findings.

Prior to full simulation, however, extensive design, testing

and redesign of display formats must be accomplished.

Preliminary evaluations of proposed displays and cockpit

designs often take place in graphics support facilities and

simulation mock-ups. Results from these experiments feed

directly into the full simulation design. This research and

development approach dictates that extensive graphics

capabilities be available and supported in the various

simulation facilities [Holt and others, 1980 : Ii-1 to 11-28,

Lizza and others, 1983 : 1-5; Moss, 1984).

Thus graphics development within the R & D community is

increasing, with a growing emphasis on real-time graphics for

the synthesis and analysis of intelligent in-cockpit

displays. These current cockpit integration efforts are

certainly a culmination of those efforts which began in the

50's. Today's activities, supported by a much more

sophisticated technology base, are more likely destined to

succeed. The immaturity of the early technology that plagued

the ANIP project will not hamper current work. Vastly

improved hardware and software provide a rich set of building

-.-. blocks to avoid the problems of yesterday.

30

Graphics Support Environments

Software support for in-cockpit display development has

evolved slowly since the early attempts at generating

pictures for pilots. The design of support environments for

graphics display development is less complete than the

hardware support efforts. This reflects the traditional

development cycle in which software sophistication typically

lags behind hardware advances. Cockpit display support tools

are less mature than state of the art support systems for

Computer Aided Design/Computer Aided Manufacturing (CAD/CAM)

types of applications even though much of the technology is

similar. This state of affairs is slowly changing as

interest and support for the introduction and use of graphics

in the cockpit increases.

There are several efforts whose goal Is to provide

better design environments with coordination among the

various participants. A combined simulation development

effort with NASA, Lockheed Georgia, the Triangle Research

Institute, and North Carolina State University has encouraged

the parallel development of facilities at NASA and Lockheed

with the same equipment. This permits a greater exchange of

compatible software, thus reducing development time. A

coordination activity among Boeing, Lockheed, ... , and the

Air Force Wright Aeronautical Laboratories has been working

to identify appropriate graphics equipment for use In

simulation with the issue of hardware and software

31

.. .-..

commonality of major concern (Holt and others, 1980 : 11-29

to 11-42; Lockheed, 1982, 1984; Wall and others, 1980 :

55-59).

The Air Force Aerospace Medical Research Laboratory

(AMRL) is researching the area to support cockpit design in

general. They currently have a multi-million dollar

development program to define a computer-based system which

can assist in cockpit design. The Flight Dynamics Laboratory

is currently working on a project for Computer Aided Design

and Evaluation Techniques (CADET). The facility for display

format design would be one of several automated tools within

the CADET framework of software support [Bashore, 1983].

The CADET graphics requirements are in turn loosely

*based on the Panel Layout Automated Interactive Design

(PLAID) concept which NASA has used since 1979 at Johnson

Space Center to support the space shuttle cockpit panel

design. PLAID supports vector only display design by

permitting the user to design both primitive and composite

objects. These objects are then manipulated by the display

processor to effect sizing, rotational, and projection

changes in the resulting picture (Rothe Development, 1979 :

1-8).

Another significant effort in the area of cockpit

graphics support is an in-house development system, the

Symbology Development System (SDS), designed by Kaiser

Electronics. This system provides assistance for developing

•~*~)display formats from eristtng symbology. It is capable of

32

targeting the final display to the F-18 Heads-Up Display

(HUD) hardware. The basic concept of this system is similar

to the underlying DESIGNS concept. The actual use of the

*system has proven to be quite satisfactory and It has grown

into a useful tool for that particular application [Kaiser,

1983 : 1-170; Kaiser, 1984a : 1-7; Kaiser, 1984b : 1-8].

There is a rich history surrounding the use of graphical

displays for cockpit design. From the earliest programs to

the concepts of today, the potential for graphical displays

has been recognized. The problems to be addressed now

concern how best to realize this potential. Appropriate

methodologies and software support systems must be developed

to support all phases of the graphics development life cycle.

* 33

Cb *'o ~\ ~ . ~ ~ ~ . . . * * ' *

- *. *,* *b **

II. Problem Definition

The life cycle for graphics software development in

support of simulation has been discussed earlier in the first

chapter. The iterative cycle used while refining graphical

designs can be quite time consuming. This is certainly

typical of any large scale software development effort. In

addition, graphics software development is a very resource

intensive activity. Severe demands can be placed on both

people and hardware facilities. Actual case histories

indicate this resource commitment is both demanding and

necessary to accomplish the development. It is intended that

software support systems, such as DESIGNS, should address

this problem area and provide assistance which would reduce

the workload.

The Software Development Cycle

Of critical concern within the life cycle is the level

of resource commitment required to support graphics software

development and maintenance. Significant graphics software

must be designed, coded, and tested to support research

simulations. Typically the development of software for

display generation requires an extended period of time with

the resulting product being generally difficult to maintain

and modify.

34

In addition, a developed software package can be highly

machine dependent. As formats are redesigned, much of any

previous programming effort must be reaccomplished. New

graphics requirements may necessitate the use of a new

graphics system. Recoding of entire formats for dissimilar

graphics generators can be a monumental task, with the

complexity of such an exercise dependent on how different the

systems are. The differences in hardware capabilities and

software support packages must be accounted for in the

recoding.

Efforts are underway to address these needs in the

software development cycle. The sheer economics involved in

software development is driving both industry and government

to develop ways to streamline program costs. The entire area

of software design, development, and maintenance is receiving

considerable attention.

A Case Study

A contractual effort recently completed by the Boeing

Corporation for the Flight Dynamics Laboratory (AFWAL/FIGR)

is typical of the resources expended for a graphics intensive

project. Boeing was tasked with developing and testing a

software package for a set of formats which had been designed

in a previous effort.

The format suite contained various tactical situation

displays (TSDs), weapon/stores displays, and system/emergency

35

procedures displays. The proposed suite of formats had been

developed earlier by the McDonnell Douglas Corporation. The

scope of the effort was to evaluate the formats when they

were displayed with differing characteristics. Formats were

displayed with color versus black and white presentations,

raster versus stroke versus hybrid techniques, and some

special graphics presentations such as video disks. These

formats were then test flown in simulation using civilian and

military pilots. Examples of each type of display developed

are shown in Figures 9 through 17 [Jauer and Quinn, 1982 :

22-117).

The facility used by Boeing to produce these displays

contained a variety of graphics hardware. The complement of

equipment included Sanders, Megatek, Ikonas (now Adage), and

Lexidata hardware. Most of this equipment was used in one

capacity or another in the completion of the effort.

The manpower for completing the graphics software

development involved 3 to 4 senior graphics software people,

working in excess of 4 months. Nearly 1 1/2 manyears had to

be expended to produce working software for a set of formats

that had previously been designed and optimized! Significant

project time must be committed to the software development

phase independent of the design and modification phases which

must accompany every effort.

36

-> N

CALIBRATED_

AIRSPEEDALTITUDE (AGO)

VELOCITY

SAM VECTOR

ENVELOPE
SURFACE

SAM

WAYPOI NT

_____ ____ ____ ____FLIGHT

CHANNEL

4 GPOI-0870.1 10

FIGURE 9
TSD in Monochromatic Stroke

* 37

-, .o. . - -. 7 7.-- -- '. .. 'T - . . c. ,-- . - -. - w r- ..'..-r,.- - -. . . - * ..

ARM

ROY ROY

QRDY

FIGURE 10
Stores Display in Monochromatic Stroke

!:W

/ i
L GEN
NO RM '

R GEN

i NORM

OFF y

FIGURE 1 1
Procedural Display in Monochromatic Stroke

38

' " -" ,. , -. ,'. '.'.' ". , . '. ". -" - "- -- - -"/-". . - -". > i ."-'/, ,' - .. 1.> ' ',". .

FIGURE 12
TSD in Color Stroke

39

o4o'.,

FIGURE 13
Stores Display in Color Stroke

40

FIGURE 14

Procedural Display in Color Stroke

L-L-GE41

oN R .
.. . .

.. . .. -- -,. -. -.. -...-.-
.. .-" ., ., .-,::- ., -. -.. .-..

F.

... ..-

F

FIGURE 15
TSD in COlor Raster

42

FIGURE 16
stores Display in Color Raster

43

....... . -

FIUR 1

PrLdua GENa i oorRse

NORM

In light of these significant manning requirements It Is

justifiable to question whether or not the resulting graphics

oriented cockpit Is desirable. In results from piloted

studies, unequivocally, crew responses to graphics displays

in simulation have been favorable. Pilots feel that displays

provide a natural focal point for integration in the high

technology cockpit. Measures of crew performance indicate

that there is significant Improvement in the overall cockpit

management of complex systems and missions. Therefore, It

appears that resources expended in this area are well spent

[Boeing, 1983; Lockheed, 1984; Moss and Barbato, 1980].

The question then becomes not one of whether or not to

develop such design tools, but rather one of identifying

critical needs. What kind of tools and capabilities must be

provided? Will they adequately and effectively support all

phases of graphics work for cockpit displays? To answer

this, one must know the actual environment in which the tools

are to function. Defining the desired capabilities and

operational environment defines the overall problem and

identifies the required tools.

The Operational Environment

The Boeing simulation facility typifies the operational

environment toward which this thesis effort is targeted.

These research organizations have been built up with a

variety of graphics equipment to take advantage of the

45

i-.* - ~~. . *-** v *-.--*..w~ ~~..~~ .

systems available and to provide a broad spectrum of

capabilities. This creates a rich but somewhat imposing

environment in which to design and modify graphics software.

Compounding the difficulty of equipment variety within a

single facility is the ever-present time requirement to

develop and test experimental systems as quickly as practical

and to support a variety of complex, highly dynamic test

programs EAF Flight Dynamics Laboratory, 1981 : 14-29;

Becker, 1982-3; Boeing, 1983].

With these research and support oriented facilities, the

principal product is system evaluation by means of

simulation. The personnel in such a facility are often not

the original designers of the display formats. In many cases

they have an adequate, but not extensive, understanding of

the graphics hardware and software available to them. If the

format designer is a part of the development team, this

individual is probably even less versed in the technical

details of the graphics resources.

The typical facility will have multiple graphics systems

of varying types and options. Both raster and calligraphic

generators will probably be available. System options are

not standardized and often vary with respect to color versus

black and white, advanced hardware options such as two and

three dimensional transformations, differing display

resolutions, and the availability of support software

packages.

46

,''..:'. ,; : : : . ; .a . * .L . °. . - .. : ' ,: ,. a a a.' ¢ ,:, 'o ? .,.,,

--. -N. Y*..%..W I.-a I a - Y 7-W -. j

There is no doubt that the specific characteristics of

the environments can be dramatically different from one

facility to another. However, there are some key elements

each has in common. First, the variety of equipment which

may be replaced, modified, or discarded creates a dynamic

situation to handle. Second, there will be multiple graphics

support packages available as each graphics generator

normally has some unique, vendor-supplied package. Third, it

is unlikely that personnel will be expert with all the

hardware and software available to them. Finally, the time

requirements for the typical programs conducted in these

facilities demand that complex software development be done

quickly. Many of the desired capabilities in a support

environment are dictated by these facility considerations

EAFWAL/Flight Dynamics Laboratory, 1982 : 12-21, 31-69;

Becker, 1982-3; Sexton, 1982-4].

Statement of the Problem

The life cycle issues for software development present a

complex set of problems with which the system designer must

deal. The issues of concern during this research effort

focus on the specific area of support for graphics

development in the real-time simulation environment. The

many facets of this activity - from the basic issues of

format design; the intensive, iterative process of refining

display designs; to managing the complex nature of the

47

..............................I..............................a *

facilities available - have been presented to define

adequately the problem domain considered. Each of these

components contributes to the overall complexity of the

problem and certainly molds the definition of potential

solutions.

It has been the intent of this research development to

provide at least a partial solution which can reduce the

amount of time required to develop the actual graphics

software required for simulation support. While all the

problem areas referenced impact the nature of the solution,

the critical question addressed in this effort involved

improving the available development tools. The high cost,

resource critical, iterative development cycle desperately

needs support features to decrease its tremendous impact on

overall system costs.

The key problem becomes one of identifying those

features, methodologies, and functional capabilities that can

positively affect the software development and maintenance

cycle. Once identified, actual tools can be developed which

improve the users' abilities to accomplish tasks. The goal

of the DESIGNS development is to augment the users'

capabilities, to provide an alternative, and hopefully

improved, environment in which to develop simulation graphics

displays.

In order to accomplish this goal, this thesis effort

defines the underlying software structure for a set %f

•K... graphics tools. The resulting software system addresses the

"- 48

-% % % %% % •°,,' '.% , .' ' % % . . , .% %
"

'o -,o....,-o. ' ' , - . --- . . .-. '.- . -.°

problem defined here by means of an environment/operating

system whose function is to support basic display creation

and modification. The system centers around an interactive

graphics terminal through which the user 'converses' with the

DESIGNS software system in the activity of designing or

updating a display format. While being tailored to the

problematic needs of the Control Sythesis Branch flight

simulation facility (AFWAL/FIGD), the definition of DESIGNS

does address the general issues required for graphics

support.

*, Constraints of the Problem

A complete solution to the graphics design problem

discussed was too extensive to design, implement, and test as

a single thesis effort. The objective of this effort has

been to address key issues involved in the overall design for

the package. In so doing, an appropriate set of tools was

identified for development. These tools provided a

reasonable subset of the completed system capability, but

more importantly provided a stand-alone tool useful for

graphics development immediately.

Thus, it was necessary to determine a valid proof of

concept approach for the project. This addressed the total

system design and implementation issues. In developing the

project to prove the feasibility of the concept, a subset of

the overall effort was implemented. To this end, constraints

.. 49

be °**
. ' . * *** d W . d.)°.** . ~ ~ * * ,* *

were imposed on the effort in an attempt to limit the project

to a manageable size. The resulting effort still yielded a

product whose capabilities provided an adequate test of the

feasibility and utility of the original design concept.

The primary goal of this thesis effort was to

demonstrate that the graphics environment designed for some

arbitrary host machine can be used to create and edit display

formats, and generate correct source code for a specified

target graphics generator. It was necessary to demonstrate

this thread through the system to prove the overall utility

of the system. Completion of this portion of the design

illustrated that it can decrease both the software

development time and the re-hosting complexities for graphics

software.

One key element in the DESIGNS definition is the symbol

librarian. This particular function serves as the link

between the editor functions and the system support

functions. The complete development of the librarian

capability defines the complete thread through the system

discussed earlier. Plus it also is a powerful, independent

tool. Many formats are based on previously developed symbol

sets. A mechanism to manipulate, modify, and selectively use

individual symbol definitions in the preparation of different

displays provides an excellent basis for the initial DESIGNS

effort.

• 50

Therefore, this effort concentrated on the design and

implementation of the symbol librarian capability. In so

doing all the critical areas were addressed, at least from a

design point of view, with the exception of image graphics.

Complex image generation, such as would be required to depict

realistic models for the out the window view, is well beyond

the scope of this thesis effort and was not developed

further.

To further simplify the system, a single target graphics

generator was identified and used for the proof of concept.

After demonstrating the concept for one device, additional

modules defining other graphics devices can be added to the

environment to include any device available as a target. The

internal definition of a device driver module will differ for

various target systems, since the individual definitions must

be tailored to the hardware and software capabilities

specific to the given device.

The contention in the development and testing phase of

DESIGNS is that the proof of concept can be demonstrated with

a single target device. At a later time device driver

interfaces can be installed for other systems. To

demonstrate that the single target is not being handled as a

special case, stubs for other potential targets will be

included. However, for the initial thesis effort, these

stubs had minimal functionality other than to demonstrate

that the design accounts for multiple target devices.

51

•

I.-,-.-J - . - .-- - .- . - -. -. ----..- -.. -..- - - .-- ,-\ " i _ - - . - -. T . . -
-

' . : . -

This effort did not address the issues involved in

designing the dynamic test capability into the environment.

A dynamic testing function built into the DESIGNS environment

would provide a method to check out symbol dynamics prior to

actually interfacing with a simulation. However, the

critical need within the simulation facilities is to create

the original format designs, many times evaluating a series

of them in static, mock-up conditions. While dynamic testing

is a valuable extension to the project, it is not necessary

to prove concept utility. This enhancement would, at some

future date, improve the overall usefulness and power of the

system.

In part, the driver for selecting the set of

.V, restrictions for the effort came from a consideration of the

potential end-users of the thesis product. The thesis

development effort, as defined with its limited scope, can

serve as a solid starting point for many of the graphics

efforts involved in aircraft simulation. By consciously

designing for the anticipated system enhancements and

extensions, the software package can evolve into the complex

environment described earlier.

Selection of this baseline set of capabilities was based

on the apparent short-term needs of a specific simulation

facility. The AFWAL/FIGD and FIGR facilities have an

immediate desire to use such a support tool. Their initial

needs are in the area of heads-up and head-down displays

which use alphanumeric and simple symbology in the formats.

52

• -~ *~ P, .* * -~-~ .

Continued discussion and involvement with these organizations

helped to narrow the focus of the project. With this

guidance, a more appropriate system was designed to meet the

critical needs of today. By considering future requirements

in the definition phase, the DESIGNS system can continue to

expand to meet future application needs.

Thus the scope of this thesis has been delimited to

demonstrate a complete path from the format design and

editing in the host system, to the display generation in the

target graphics system. The core of requirements Includes

the design and implementation of a symbol librarian for

storing and manipulating symbol definitions, with design

considerations for the editing of these symbols/icons, the

definition of the interfaces to the host's operating system

and the target device, and the assignment of dynamic

attributes to elements within the display format.

53

. . - . .- . - . .. , . ., .- ..

IV. DESIGNS Requirements

It becomes apparent that there is a need for graphics

design tools which provide a working environment powerful

enough to support the designer's requirements for display

format design. Such a support environment should provide the

display designer with a 'user friendly' interface to the

available graphics design tools. It should provide a

straight-forward mechanism for both the initial design and

the subsequent software maintenance and modification. In

addition, it is desirable for this system to have the

capability to target the final display to any of several

target graphics generators. These capabilities greatly

decrease the time it takes to design or modify cockpit

display formats. Such a design environment does not require

that the designer of the formats be knowledgable about either

the graphics software or hardware. Thus the human factors

designer can be designing the format and the software to

display it at the same time.

Synopsis of Requirements

The highest level requirement levied on the DESIGNS

definition is that it carefully consider the environment for

which it is intended. It is NOT strictly a graphics

endeavor. Major portions of the system requirements

specifically address specifications for the user interface.

54

% , .,- , S. '. ' - ** * Z-

Remembering that the key goal of the effort is to simplify

the software development and decrease development time, the

nature of the user interface is critical for success.

Certainly of equivalent importance is the set of tools

that can be provided within the DESIGNS toolbox. These tools

provide features which can assist in graphics design,

modification, and maintenance. The third major portion of

the system is the link to available hardware devices. Not

only must the target graphics systems be considered, but also

the DESIGNS host, and the user workstation.

Graphical requirements are certainly an important

element in the overall effort. Throughout the various

subsystems, graphical issues are addressed. The graphical

capabilities that are required are implemented with reference

to existing standards and graphics techniques.

It is necessary that the system software that results

from this work be a consistent, maintainable package. To

help accomplish this, it has been required that structured

design methodologies and the accepted practices of top-down,

structured programming be used during the development of

DESIGNS.

Referring again to Figure 5 in the first chapter, it is

apparent that these three areas - user interface, toolbox,

and interpreter - define the infrastructure for the DESIGNS

environment. The graphics requirements are interwoven within

each subsystem and certainly direct design decisions.

55

. ' -"*9 * * .'' %4p$ 9 - 9. %E [-
m ' m. . w-

The complete, integrated environment must provide

extensive supporting tools to use the results of the

graphical data manipulation in an operational simulation.

This family of tools makes it possible to transition the

developed graphics technology into the exact configuration

required by a simulation - whether that be as an integral

part of the simulation displays, an off-line analysis tool,

or a stand-alone design tool. The DESIGNS definition

postulates tools to integrate and support the various

available graphics processors, the user interface, the

dynamic test facilities, and the necessary host processor

capabilities. The following sections discuss the functional

requirements of DESIGNS within the context of these

subsystems.

The DESIGNS User Interface

The user interface for DESIGNS is the focal point for

the effort. The underlying package of tools must be designed

for use by the non-expert in graphics as well as the expert

programmer. Thus, the interface between the user and the

package must be carefully planned to permit users with a

variety of backgrounds and levels of expertise to use the

system with equal effectiveness. The system should provide a

'pleasant' environment for the user, one that is relatively

straightforward to use. At the same time, the DESIGNS tools

must be extensive enough to provide an ample user interface

56

to all of the system's capabilities.

The typical user of the proposed DESIGNS package will be

an engineer or human factors psychologist. There will be no

dedicated operator for the system, thus all users are in a

sense 'casual'. There is no required minimal level of

competancy in computer science. The user should only need to

know how to initially start the system. Thus it is important

to provide a system which is easy to understand. Any user

should be able to engage in a dialogue with the system to

create, save, or modify display formats. No formal

understanding of any graphics drivers or hardware is

necessary. All the interfaces to actual physical devices are

invisible to the user, thus imposing no in-depth knowledge

requirements.

With this definition for the system user, it becomes

apparent that the techniques used to define the

'conversation' between user and computer must support ease of

operation. Interactions with the system must be clearly

defined from within the dialogue itself, so that the user is

dealing with an autonomous system.

The importance of the definition of the user/machine

dialogue in the DESIGNS development can not be overstated.

The dialogue design and implementation bias each user either

favorably or not toward the final system. The dialogue

provides the mechanism to access the tools defined for

DESIGNS. Therefore, the level to which the dialogue can be

user and application tailored will determine the success of

57

the overall package.

Emphasis is placed on designing an autonomous system,

relatively simple for even the uninitiated or infrequent user

to operate. The system should provide a mechanism for

expansion and adaptability to support the research

environment for which it is intended. The needs and

capabilities of the DESIGNS facility and users provided the

impetus for the design process. The resulting dialogue

reflects those needs and thus, in all probability, will be

inappropriate for other classes of users or operating

environments.

It is required that a menu driven approach for the

dialogue be used based on the definition of the DESIGNS user.

For the environment in which DESIGNS is to be used, the major

concern is to make it available and usable to a variety of

infrequent users. The ease of use criterion is very

Important.

Thus the relative ease with which a menu driven system

can be used offsets the potential shortcomings. The menu

driven dialogue implemented for DESIGNS does consider ways to

avoid some of the pitfalls of the classic menu driven systems

by using some command language features. This somewhat

'hybrid' approach enhances reliability and user acceptance.

Appendix B, which discusses the human factors techniques

involved in user/machine interactions, presents the pros and

cons of the various dialogue methods available.

58

S
r% %. * S

S * **

The DESIGNS Toolbox

The system toolbox must provide an adequate set of

graphics tools to accomplish the tasks of development and

modification of simulation related displays. The toolbox

must also support the overall life cycle of the graphics

development by means of facilities to interact with available

host tools, dynamic testing functions, and documentation

support.

A critical function of this set of tools is that of

editing display formats. The user must be able to create and

modify graphical files in a manner analogous to the familiar

editing of text files for other areas of software

development. The graphics editor supports the initial design

and subsequent changing of alphanumeric and symbolic

displays.

A fully implemented editor supports the more complex

area of image design. Images are graphical representations

of actual scenes, such as a synthetic terrain display.

Development and modification of such displays requires more

extensive tools in the area of modeling, shading, hidden line

removal, textural features, and other advanced graphics

techniques. Table I defines in more detail the desirable

features an editor must have to meet these functional

capabilities [Pavlldis, 1982 : 17-19J.

In addition to editing graphics symbology, the DESIGNS

environment must provide a mechanism to describe the

a59

Z 4

TABLE I

Functional Capabilities of the DESIGNS Graphics Editor

TASK CAPABILITIES

Text Editor Text entry
Text deletion
Text replacement
Text repositioning

Symbol Editor Symbol entry or selection
- predefined icons) Symbol deletion

Symbol placement
Symbol repositioning

Symbol Editor Symbol drawing/design
(undefined icons) Symbol modification

Symbol entry into library for
system expansion

Image Editor Extend drawing techniques
(pictorials) Support arbitrary format design

Painting capability

characteristics of the symbology. Complete symbology

definition includes both the physical appearance - such as

shape or size of the icon, and other describing

characteristics - such as location, color, intensity, etc.

An object is not completely defined until the characteristics

are specified. An object's characteristics can be modified

over a period of time. Therefore, it is also necessary to

define the possible dynamic transformations a given symbol

::: may undergo. Table II details the functions which must be

60

* supported for the complete definition of a symbol's

attributes.

TABLE II

Assignment of Static and Dynamic Attributes

T A S K C A P A B I L I T I E S

Define fixed attributes Define position (x, y, z)
Define object size
Specify color/intensity
Define orientation

Define transformations Dynamic translation/rotation in
2 or 3 dimensions

Alphanumeric updates
Variable color/intensity
Variable perspective

Identify the dynamic Tag dynamic alphanumeric fields
elements Identify dynamic symbols

Identify those transformations
permitted on an element

Once defined, the various building blocks of a display

format need to be maintained for future use and modification.

Is previously discussed, much of the effort in graphics

development lies in the use and modifications of existing

symbology. The DESIGNS system proposes a symbol librarian

*function which manages the database of graphics symbols. The

librarian must provide the interface into the database for

the user to manipulate the graphical definitions contained

* . therein. Table III defines the tasks for which the symbol

61

librarian is responsible. The tasks of the symbol librarian

parallel those of an operating system file manager. Details

concerning the types of display formats to be supported by

the librarian will be discussed under the simulation topics

chapter.

TABLE III

Functional Capabilities of the DESIGNS Symbol Librarian

TASK CAPABILITES

Addition/deletion of the Access database definition for
definition for symbols the library to add/delete any

specified symbol

Updating existing symbol Interface with the graphics
definitions editor (predefined icons)

Store multiple versions Provide audit trail of changes
if desired made to designed symbols

Automatic linking of the Retrieve specified symbols
source code modules to Link the various modules for a
create formats defined complete file for the static
from previously tested display
symbology Create the dynamic update file

based on selected attributes

In addition to these tools supporting graphical

functions, there are several general support facilities that

a sophisticated environment should offer. These extend

beyond the graphical issues of format design and consider

areas which impact the overall life cycle considerations for

,, , the software being generated. Table IV lists the type of

62

!I

support features required in the complete system.

TABLE IV

Integration and Support Areas

SUPPORT AREAS FUNCTIONS

Host computer operating Access to the system tools,
system interface functions, and storage media

System error checking

Dynamic Test Facility Dynamic format demonstration
Format evaluation and debugging
Offload eventual target device

Documentation Facility Document display requirements
Document new symbology
Audit trail of display mods

An important part of the toolbox support is the

provision for an interface to the host computer's operating

system. This Interface provides the necessary system

functions to support the graphics design process, but does

not require the user to understand the detailed working of

the operating system. The DESIGNS system should be able to

exploit the useful features of the operating system that are

available.

Another support function required within the DESIGNS

toolbox is the dynamic testing facility. A sophisticated

system should provide some method for dynamically testing the

formats which have been developed. This permits the user to

63

*demonstrate the dynamic behavior throughout the range of

operation so that any anomalous behavior can be detected.

Undesirable effects can be corrected in the design system

prior to generating code for the target system. Such a

dynamic demonstration provides the final test assuring a

complete and correct implementation of the original design

specifications.

One final support tool required in a complete system is

some form of on-line documentation. It Is important that the

user be able to describe and track the work that has been

accomplished with DESIGNS. Having the documentation

available within the graphics development environment

improves the definition of the symbols and formats defined.

It also provides a more cohesive development tool since all

phases of the development work can be accomplished using a

single support package - namely DESIGNS.

The DESIGNS Interpreter

The use of the term interpreter is somewhat misleading

in the DESIGNS conceptual model. This block within the model

represents not only the mechanism which interprets DESIGNS

directives to produce target source, but also the definitions

of the target hardware and software, along with all the

interfaces required for DESIGNS. Much of the DESIGNS

interpreter software must be developed to provide adequate

definition of the available hardware so that the full

64

potential of DESIGNS can be realized. Thus it is imperative

that the complete system requirements and final design

consider the desired synergy of the software and hardware

components. Table V lists the functional capabilities of the

interpreter subsystem.

TABLE V

Functional Capabilities of the DESIGNS Interpreter

TASK CAPABILITIES

Define target hardware Description of the available
and software support hardware options; definition

of software call structures

Generate source code for Describe 'rules' governing the
10 static display software structure required

on a given graphics target

Support source code for Provide template for dynamic
run time modifications updates

Provide means to modify the
effect of symbol dynamics
by altering drive equations

Define user workstation Describe the workstation
capabilities

Define standard interface to
the capabilities

The important requirement for all of the interpreter

capabilities is that all interfaces between the graphics

design environment and ANY physical device can, and must be,

defined in terms of the data exchanged between them. In

65

DESIGNS, this interface specifies the format for the

communication between the modules. The final step of the

interpreter subsystem is then a device driver of some sort

which is specific to the device and accomplishes the

interpretive phase of the system. Thus any device driver,

while its internal structure is highly device dependent,

simply conforms to the pre-established communication format

in order to exchange display data. Thus if the interface

definition is complete, any target definition can be added to

the system. Proving the concept requires thorough testing of

this interface definition to check its adequacy.

This concept of device independence - whether it is for

the target systems or the user workstation, is important for

several reasons. It permits extension of the DESIGNS

capabilities to new target devices. This extension can be

provided in uniform manner using device dependent routines

only at the lowest software level. It also provides for

better portability by isolating the device dependent modules.

Since the benefits are several, the DESIGNS interpreter

subsystem must be defined with the issues of extensibility

and device independence in mind. The graphics tools and the

environment which they provide must be versatile enough to

permit targeting to any of several available graphics

systems. At the same time, it must be extensible to permit

additions to or modifications of the existing interface

package in the event that the graphics capabilities change.

This extensibility must include changes to both the graphics

66

.* * *' *

hardware and their software support packages. To accomplish

this adaptability, the DESIGNS environment must define the

target machines. Such a definition should be in terms of the

graphics software packages which are available on the target

device, reflecting those hardware functions which may be

accessed on any given device. Such a system definition

supports the generation of source code appropriate for a

specified target environment. Thus source programs for any

number of dissimilar target graphics systems can be generated

from the generic format descriptions defined within the

design package.

The DESIGNS environment should embed the device

* dependent structures in internal modules, the structure and

existence of which the user need not know. From the user

viewpoint there is only a single structure to manipulate and

that is the DESIGNS database which is accessed through the

user interface. External target machines can be selected by

the user, but require no further user definition.

It is Imperative for the successful implementation of

the DESIGNS concept that a standard definition for an

interface to multiple targets be developed. Without some

standardization in the target definition, both the hardware

and support software differences for varying targets become

major problem areas for DESIGNS. The aquisition of new

target devices or the upgrading of old ones would require

tremendous modification to the DESIGNS system if large

portions of the software package were constrained to being

67

-.'-a * -4 . ?- '3- . ." " .. 4 4 "-" " "' "-' "' "' ' " "4 "4 " " . " - " "• ' " * "" - "" - - " '"

target specific.

The issues of concern in this area of interface

definition cut across the boundaries of both software and

hardware and demand a thorough appreciation of each. In

order to effect the design of such an interface, individual

target machines must be known as part of the DESIGNS

environment by means of common system descriptors. This

system definition includes information specifying the

hardware and software parameters of the specific system.

Each target then has its own definition module internal to

the DESIGNS package. The important implication here is the

complete development of adequate abstract data types for the

target machine definitions.

The actual target definition must include data which

completely defines both the hardware available and the

software which supports it. Much of the hardware definition

can be used to assist the user in selecting an appropriate

final display source if such a decision has not already been

made. The hardware definition must include such data as the

number of output channels available on the system, whether it

is raster or stroke, color or monochromatic, how many colors

or intensity levels are supported, whether it has hardware or

software supported transformations, has multiple processors,

or software overlay capability. Using this information, the

user can intelligently select the target machine best suited

for the application at hand.

68

The definition of the target support software should be

completely invisible to the user. This information hiding is

consistent with the policy of not requiring the casual user

to be more knowledgable about the technical aspects of the

system than necessary. This internal definition defines the

available software library callable subroutines, procedures,

and functions which support the target options.

The issue of commonality among the target descriptions

also impacts the future extensibility of the DESIGNS

environment. Common definitions imply that multiple targets

can be available during any given format designing session,

thus providing the user with a variety of potential target

devices. Targets can be added or removed from the DESIGNS

database by creating or deleting the definition structures.

In this fashion the DESIGNS software can be upgraded to

reflect the current facility capabilities without massive

changes to the underlying package. The DESIGNS software

remains unmodified, only the target definition package

requires changing.

Once a standard structure for the target device hardware

and software definitions is defined, all systems can and must

be specified in the same fashion, requiring no specialized

software tailored to the Individual target system. The user

is at liberty to use raster or calligraphic target machines

interchangeably, needing only to be aware of the aesthetic

differences in the resulting displays.

69

Just as new targets can be added by creating an initial

hardware/software specification, so also can these

specifications be modified. Upgrades or changes to any

existing graphics processor require that the database

defining the machine be modified to reflect the new

functions. This update assures continued compatibility with

the target configuration. The capability to interactively

update these definitions has previously been mentioned under

the support areas of DESIGNS.

The DESIGNS Facility

It is required that the design and software developed

from this effort be compatible with the thesis sponsor's

* facility. The Flight Control Development Laboratory in the

Air Force Wright Aeronautical Laboratories (AFWAL/FIGD) is

typical of the military research facilities and is to be the

end user of this research product. Historically this

facility has been tasked to support HUD and in-cockpit

displays for several fighter aircraft such as the F-15, F-16,

and the AFTI-F16.

Experimental displays for non-conventional aircraft such

as the Forward Swept Wing airplane have been supported.

Design work for display algorithms to support Terrain

Following/Terrain Avoidance (TF/TA) missions is a major

activity. In addition, support for a variety of navigational

heads-down displays with moving maps and flight planning data

70

S .. have been supported. The symbology for all of the displays

has been designed and displayed on a monochromatic,

.o calligraphic display. To date this is the only graphics

capability in-house.

Currently an advanced color, raster system is being

integrated into the existing simulation computer facility.

With the completion of that Installation, more complex

display generation can be supported. With the advanced

hardware in place, heavier emphasis will be placed on

pictorial formats. Facility planning calls for the supported

growth of the graphics power by further additions of

equipment in the following years [AFWAL/Flight Dynamics

Laboratory, 1982 : 35-53]. This serves to increase the need

for a standardized design environment which can support the

different pieces of graphics equipment.

Based on the current in-house graphics capability and

the projected efforts to be supported, the critical graphics

task is the development of calligraphic heads-up displays for

Air Force fighter aircraft and fairly simple heads-down

displays. No sophisticated pictorials or color symbology can

be supported at this time. However, these have been

considered as extensions to the environment during the design

phase.

For the short term, the facility requires design support

to develop displays for the type of cockpit configuration

depicted in Figure 18 [General Dynamics, 1983 : 8-2).

71

7 jj~

0
0

M.

41

00

FIGURE 18
*Typical Cockpit Display Configuration

72

The design environment must provide the interface to a

single target graphics device as it Is the only one

immediately available for simulation support. The long term

needs dictate that multiple devices of differing capability

and type must be defined and integrated as targets.

Furthermore, the complexity of display formats will increase,

*: requiring the expanded editor capabilities discussed In the

last section. It would be beneficial to implement the

dynamic testing facility as support for any long range

activities.

The discussion of the long term growth in the simulation

facility indicates the importance of the extensibility of the

effort. If a truly useful tool is to evolve, it must be

. developed with change and growth anticipated. Identifying

future needs, and defining them to whatever degree possible

during the initial project development, strengthens the

possibility of expansion.

Summary of Functional Requirements

In summary there are six major functional areas in which

a complete, rigorously developed environment must provide

functional capabilities. These provide all the services

required by the user to fully develop, debug, and maintain

graphics software. They must include the capability to

(I) perform editing of static graphics formats,

(2) assign static and dynamic attributes to specified
:.. -*' display elements,

73

%% " "-" "" ."" ' ' " \. . '. " * " .*. ; .
" ;- . .d ~ * *. q.**.- *. *.- '

(3) provide access to existing libraries of symbology,

(4) provide the interfaces required for the user
workstation,

(5) support the interface to the target systems, via
the target definition packages, and

(6) provide access to host computer utilities, support
dynamic testing and documentation.

To support these features, the DESIGNS host system,

consisting of a user workstation and host computer, must have

the following capabilities. The workstation must have

(1) a full alphanumeric keyboard, preferably with
programmable, function keys available,

(2) a joystick or mouse with some picking capability,

(3) the potential to add a datatablet In the future to
digitize pictorial formats,

(4) a single display screen with a minimum of 2047 x
2047 addressability,

(5) a support software package that can be accessed
from a Higher Order Language (HOL) that supports
the generation of graphics primitives such as
lines, characters, and conics, with some form of
display list segmentation permitted,

(6) the ability to display multiple intensity levels as

a minimum, with color preferred for the long term,

Preferably, the workstation would be a raster system.

For the longer term concerns, a raster workstation permits

the design of both calligraphic and raster formats better

than a stroke only system would support raster targets.

However, the basic DESIGNS concept does not require that the

workstation be raster capable.

The host processor for the DESIGNS system likewise can

be described. Based on the functional requirements

74

discussed, the host computer must have

(1) an HOL available, preferably Ada although the
structure provided by Pascal would support the
development well; FORTRAN is acceptable, but does
not have the overall power and structure of the
other languages,

(2) appropriate compilers for the HOL,

(3) an editor, file manager, and link/load capability
as a minimum; the Ada Programming Support
Environment (APSE) would provide a much more
powerful and complete development environment,

(4) access to hard disk mass storage, the size of which
is only limited by the number of different formats
one wishes to design (reasonably, 10-20 MByte
maximum should be required),

(5) access to magnetic tape storage to provide a backup
capability for the system,

(6) access to an adequate amount of physical memory
(estimated at 128K words), supported by the
capability to program with overlay structures, or

* task activation, so that unused portions of the
environment need not always be resident in memory,
and

(7) access to physical interfaces with all the target
devices (preferably this interface is a direct
one).

There is nothing specific to the DESIGNS requirements

that mandate that the host be a mainframe system. Mini- and

micro- systems designed as workstations are certainly

adeciate if they provide the access to the required devices.

There is also no requirement that the system be multi-user,

although the design does not preclude this.

In order to develop software to satisfy the functional

requirements of DESIGNS, certain software engineering

standards had to be met. The techniques of structured

programming were used throughout the development effort. The

%, 75

use of pseudocode, or a Program Design Language (PDL), in the

actual development of code was used. This supports good

design practice and serves as adequate in-line documentation

for the system software produced.

Additional tools from the theory of structured analysis

and structured design have been employed during the analysis

and design 3f the effort. The SADT methodology has been used

in concert with pseudocode in the design and development

process of the system [Rutledge, 1982; Softech, 1978: 1-1

thru 1-2].

A derivative of the SADT methodology developed by

Softech in the early 1970's was used to accomplish the

functional analysis and basic system design. The SADT method

..-. was selected for use even though it is more complex than

other analysis tools available such as structure charts. The

SADT was selected since it, and its derivative, have been

used as a tool in the laboratories in the past. This

derivative was developed a few years ago as the design tool

of choice within the sponsoring organization [Softech, 1979:

4-1 thru 4-23].

These design descriptions serve also as tehnical

documentation for the DESIGNS effort. They should define the

system well enough to support future modications and

extensions.

The testing of DESIGNS has also been based on proven

techniques. Due to the overall size of the project,

exhaustive testing was imposslle, so boundary checks,

76

- %.

special case testing, and functional module testing have been

important testing tools [Rutledge, 1981; Weinberg, 1979:

171-176). The tools developed have been tested as modules to

assure compliance with design goals, and then integrated with

other tools to produce a larger, integrated system.

The following chapter presents the design and

implementation of the DESIGNS environment. Special emphasis

is placed on those data structures and tools that have been

implemented to date. An overview of the complete system is

also included.

77
*" % * %" % % e%".. %. * :. ;. •* ,.. *S

V. The DESIGNS Implementation

The preceeding chapters and the appendices have provided

a great deal of information which is supportive of the

DESIGNS development process. The characteristics of the

DESIGNS environment have grown out of the ideas and

techniques presented in these chapters. While the supporting

technical information has been somewhat lengthy, it was

necessary to provide the understanding of the groundwork on

which DESIGNS has been built.

The DESIGNS concept is that of a robust, ever-growing

environment whose sole task and reason for being is to

support the graphics development work that is accomplished in

the Flight Dynamics Laboratory's simulation facility. Its

initial identity is one of a set of loosely related tools

which have helped to automate the task of graphics software

development. This initial set of tools is primarily aimed at

supporting the development of HUDs from libraries of existing

symbol sets.

It is a developer's aid, a support facility whose

ultimate realization will be a completely integrated

environment providing the necessary features for advanced

graphics generation across a broad range of equipment and

capabilities. The laborious attention to detail in the

technical discussions has been critical to identifying and

defining the capabilities that will be needed to actually

realize the complete DESIGNS potential.

78

The entire DESIGNS implementation is specific to the

operational environment and users for which it was created.

The repeated attention to device independence and system

expansion draws a focus to the critical fact that the DESIGNS

support system is functioning within a highly dynamic

environment. Its functional requirements have been

specified, and its growth capabilities postulated, to provide

reasonable means to grow and adapt within the dynamics of the

facility.

This chapter discusses the important features of the

actual facility in which the DESIGNS system functions. It

relates the necessary details of the development practices

which were in use prior to the advent of some of the DESIGNS

capabilities. Most importantly it defines how the DESIGNS

system has been developed to meet the requirements which were

levied on the system. The chapter focuses on those portions

of the DESIGNS environment which have been Implemented,

tested, and are currently in use within the simulation

facility.

Facility Description

The facility in which DESIGNS resides is the simulation

facility within AFWAL/FIGD. This facility has been discussed

in general terms in Chapter 4. As was described there, this

organization is actively involved in real-time,

man-in-the-loop simulation.

79

* . -Iq 7 .

The heart of this facility is a pair of Systems

Electronic Laboratories (SEL) 32/77 mainframe computers tied

together via a shared memory interface with a SEL 32/2750

mainframe. The SEL 2750 is the host processor for a proposed

suite of graphics processors. It currently supports two

'4egatek 7000 series calligraphics systems whose primary

function is special purpose heads-down displays. A third

calligraphic system, a Vector General System 3 (VG), is also

available within the facility. This unit, hosted by an

Electronic Associates, Incorporated (EAI) PACER 700

minicomputer, is the facility workhorse for the HUD

development. The PACER 700 is interfaced to one of the SEL

77's through i dedicated digital to digital interface (DDI).

The SEL machines are supported by the MPX operating

0system. It is a multi-user, multi-tasking, real-time system

which supports FORTRAN 77+ as its only high order development

language. The PACER computer runs a proprietary hard disk

operating system supporting a single user, writing FORTRAN IV

based software.

The Software Development Cycle

The normal procedure for developing graphics software

within the facility depends on whether the Megatek or the VG

hardware is to be used. If the Megatek is to be used, the

software is created, modified, and maintained directly on the

host processor, the SEL 2750. All the editing tools,

80

i -.... ..,-.,.,.-.. ".--.--. * *--.-'--...,-. .-. , -, ", ..,-.-'........ ..-.- ,...>-.'. -,' .'.,-'-.-,

RD-RI59 2±9 THE INTERACTIVE GENERATION OF ALPMANUMERICS AND2~'
SYMBOLOGY WITH DESIGNS ON THE FUTURE(U) AIR FORCE INST
OFRTECH MR~GHT-PATTERSON AFB OH SCHOOL OF: ENGIb

UNCLASSIFIED R DAN JU 95 RFIT/GC A/8-2 F/B29/2

~1 flfl......fsoflf

V mohhmmmm.

n4 n- !-..-:-- *-

,, 12.0 I.

11 11. 11.6
- .]

MICROCOPY RESOLUTION TEST CHART
NATIONAL SBUAU Of STANOAROS - iqG3 - A

jo |

%* %
._- "_ - , - .' ..-. % " ".-". . -.' "" "" " ' " ". %" .'_ ',-J,',, " -"," .- . ., * .' ", '.. .*-***. ,'-" ." •"-, *-- . - , ', -"* . s-.' - " ,' • " - '". '" , " , " . ,. ,, , , . - ' " ' , "

compiler and cataloging modules, and storage facilities are

"-9 available directly on the SEL. Typically each format, or

graphics application, is developed independently. There is

minimal coordination among the efforts and very little, if

any, standardization.

The procedure for developing on the VG is more

complicated. The host machine for the VG is strictly

dedicated to running the compiled software and is not a

development system. A second PACER 700 machine must be used

to compile and link software modules in preparation for both

testing and simulation use. The PACER systems, primarily due

to their age, do not support a reasonable editor or any

sophisticated development tools. Therefore, source software

for the VG system is created in the SEL 77 machine, using its

more powerful editor. This software is then transferred to

the development PACER through the DDI for compilation and

linking. The executable module is then tranferred by moving

the removable disk to the PACER hosting the VG.

This process is extremely time consuming, especially

when there are errors in the software. To correct the

errors, the disk must be moved from the VG host back to the

development system, corrections made in the SEL editor file,

the corrected source is re-transferred to the PACER,

re-compiled and linked, and the newly created executable

module on the disk taken from the development PACER to the VG

host PACER. The user literally runs in circles as the

software is being initially developed.

* 81
a

As with the Megatek software, traditionally each HUD

development was an autonomous effort. Even though basic

symbology was duplicated from one simulation to the next, the

software was pretty much written from scratch. This

situation was an outgrowth of the way the VG software

packages were written to handle display list pointers for

dynamic updating. With the traditional way of handling the

pointers, a great deal of manual labor was required to make

changes to the display list itself. These changes were not

only tedious, but extremely prone to error. Coupled with the

circuitous route necessary to create new software,

development time for VG software could be quite prolonged.

Development time in excess of several weeks was not unusual.

In keeping with the initially stated goal of this thesis

(effort, the implementation of the DESIGNS capabilities has

focused on improving the productivity within the existing

organization. DESIGNS is the key element to achieving that

improvement. As an outgrowth of the DESIGNS considerations,

a high level executive, which provides loose integration and

a focal point for all end-users of the graphics tools, has

been developed. It provides the framework for not only

DESIGNS, but all current and future tools in the facility.

DESIGNS itself is a much more potent tool. While it

must function within the hardware and software systems that

exist in the facility, it offers the potential for much more

in the future. The emphasis has been to improve the

development and user environment, to minimize some of the

82

tedium involved with the PACER development, and to provide a
single focal point for the facility graphics development. To

this end the overall DESIGNS system has been postulated, and

a functional subset of tools, with particular emphasis on the

critical PACER/VG problem, has been implemented.

The DESIGNS System Specification

It can't be emphasized enough that the DESIGNS system is

quite specific for the development of simulation software.

The formats developed using any subset of the DESIGNS system

are not merely developed and modified within the DESIGNS

environment. The display list information generated MUST be

tranferred to the selected target. This resultant display

definition MUST then be accessible to a running simulation.

The display formats are dynamically updated based on the

responses of the aircraft system in reaction to pilot inputs.

It is this issue that differentiates the DESIGNS system from

other graphics development environments. DESIGNS is not an

end in itself, It is merely the means to achieve an end. The

'end' in this case is a fully functional display, running on

the desired graphics device, which can be dynamically

modified from a simulation, running in a different computer

system.

The design specification of the DESIGNS system will be

discussed referring once again to the familiar Figure 5 from

Chapter 1. This figure provides the point of reference to

83

focus the discussion. The description of the design

progresses from the user interaction with the system, through

the editing tools and the interpreter, to the actual target

devices. Thus the user's perception of the system activities

during a development session is preserved.

This is certainly not to imply that DESIGNS was

developed in this order. In actuality, several of the lower

level tools were designed, tested, and used as stand-alone

entities, long before the actual user interface was designed

and implemented.

The DESIGNS User Interface

The selection of the hardware portion of the DESIGNS

user interface, the host computer and the user workstation,

was made from the equipment available at the FIGD facility.

The two systems considered were the SEL 32/2750 with the

Megatek units and the PACER/VG system. Based on the

requirements of the preceeding chapter, the SEL/Megatek

combination was selected. The PACER/VG system was discounted

for several reasons including,

(1) the older FORTRAN IV language support, and, in
general, poor software development tools,

(2) the lack of adequate memory, the PACER supports
only 32K words, and minimal disk storage
capability,

. (3) the VG has NO available input devices, it is
strictly ouT-ut only,

(4) the age of the system (over 15 years) does not make
it an attractive choice for a potentially

84

°7

* long-lived development effort, and finally though
* not as important,

(5) the system is heavily committed to actual

simulation support, thus has only a small amount of
time available for development.

The SEL/Megatek system meets, or exceeds, all

requirements. Its only major drawback is that it has no

direct interface to the VG, which is an important target

device. It can access it indirectly through the SEL 77

system, which is acceptable, though not optimum.

The Megatek , in its current configuration, does not

support color, but has 16 levels of intensity. It has a

fairly robust software support package providing for multiple

line types, various character sizes, hardware transformations

capability, and segmentation of the display list into a

maximum of 32 separate pictures. The package, though dated

by today's standards, was one of the earliest to be based on

the principles of the CORE Standard. In addition to the

software support, the Megatek has joystick, datatablet,

function keys, and special interrupt (picking) devices as

well as a full ASCII keyboard. Thus it provides a fully

acceptable system to serve as the user workstation.

The SEL 32/2750 computer system serves as a very capable

host. It supports all the required development tools.

Although the language support currently on the system does

not include Ada or Pascal, the FORTRAN 77+ that is available

is more powerful than any FORTRAN implementation that this

author has used. The SEL language implementation provides

85

excellent structuring features including,

(1) Do While and Do Until structures,

(2) Select Case capability, and

(3) a Datapool structure, which is a vastly improved
common structure that is not dependent upon the
declared order of the variables, as is the case in
the more familiar FORTRAN common. The Datapool
usage is dependent upon the spelling of the
variable name.

In addition, the SEL machine has access to over 300 MBytes of

hard disk storage, two 9-track tape drives, and 256K, 32-bit

words of memory. The I/O capabilities of the system more

than meet the requirements for DESIGNS.

The DESIGNS system embraces the philosophy that a

helpful, computer initiated conversation is the most

supportive for its users. In keeping with that philosophy,

the DESIGNS dialogue is completely menu-driven. Both

alphanumeric and graphical menus have been used. The use of

graphic symbology, where appropriate, has been used to

provide stronger support to the user. For most applications,

intelligent users prefer a graphics representation of the

information. With a graphical format, data is presented at

about the speed at which the user can absorb it [James, 1981:

389).

Within the DESIGNS environment, each menu level

available is presented in the same manner. This consistency

is maintained to aid the user. At all times the user has

available certain key information which defines the state of

the system. This information includes,

86

-**-... .-- - - --- .%-1--- --- q---.- -I

(1) the actual menu from which selections are made,

(2) access to HELP information relevant to that menu,

(3) an area in which the current format can be created
or modified,

(4) a status area, indicating what menu Is currently
active,

(5) a standard option to exit the current menu, and

(6) a scratchpad area in which the user may type
commands and answers to prompts, or the DESIGNS
system may write prompts and HELP messages.

STATUS AREA

R
ri A

E W
N I
U N

G

L A
I R
S E
T A

A
R SCRATCHPAD AREA
E
A

FIGURE 19
The Generic DESIGNS Menu Format

Figure 19 illustrates the generic form of the menus

presented to the DESIGNS user showing the locations of the

items listed. The Individual menu items may consist of alpha

- strings or actual graphical symbols. Symbols have been

87

. *

employed at the menu levels in which a symbolic

representation is more descriptive than a word or phrase.

Figure 20 Illustrates one such symbolic menu.

SYMBOL MENU

<--

1 3

SELECT 0

'- ..- ,--.- 5

IOL - IO

FIGURE 20
A Typical DESIGNS Symbolic Menu

Menus using word descriptors are short, usually two or

three words. They describe the activity which will be

initiated upon selection. Each entry consists of a verb

describing the action, and the object on which the activity

will be performed. Figure 21 shows the Main Menu options

within the system, and is typical of the style used in

descriptive menus.

88
4

MAIN MENU

Create Format
Modify Format
Store Format
Document
Attributes
Select Target
Test Dynamics
Quit

SELECT o

FIGURE 21
The DESIGNS Main Menu

The selection process for all menu items is identical.

The Megatek joystick is used to position a cursor on the

desired item. Once properly positioned, the interrupt

('picking') button on the joystick is pressed to signal the

actual selection. Assuming the cursor is positioned within a

valid area, the selection is made, and the activity

initiated.

A short circuit to this menu selection activity is

provided. The user may also select menu items by typing an

appropriate command into the scratchpad area. The form of

the command to select menu items is an alpha string. The

system recognizes the shortest string which differentiates

89

i
.

, .. , - " - ., ', -" + " , .
.

' - . . _- -. , .-

between the possible selections on a given menu. Longer

strings, specifying the complete command are also

syntactically correct.

Referring to the Main Menu, the following short example

explains the use of the short circuit. To select the 'Create

Format' option, the shortest, syntactically correct, command

is the letter 'C' by Itself. This uniquely identifies the

desired command. If 'CREATE' is typed in its entirety, that

also is correct. Compare this to selecting the 'Store

Format' option. To differentiate this item from the 'Select

Target' option, at least the 'ST' must be typed. An 'S' by

itself does not uniquely identify any available menu item.

The key to using the short circuit successfully is

recognizing that any substring of the option, that uniquely

identifies that option, will properly select it. In

addition, the full string will also select the option.

The short circuit is also provided for the symbolic

menus for those users who prefer to make all their entries

from the keyboard and not use the joystick at all. Here the

name of the symbol, or the identifiable substring, may be

typed into the scratchpad. This short circuit is provided to

improve system response time. This is especially important

to those users who have become familiar with the system and

find the joystick selection method too cumbersome. The

user's guide in Appendix F defines the acceptable commands

within the system and provides sample session activities to

illustrate how DESIGNS can be used.

90

The DESIGNS Toolbox

Within the structure of the DESIGNS toolbox, there can

be a great many functions. It was beyond the scope of this

thesis to provide the design for all such possibilities.

Several key functions were designed and developed in detail.

Others have been considered in such a fashion to facilitate

their addition at a later time.

The graphics editor, coupled with the symbol library

functions are key to the initial development of DESIGNS. The

design for the graphics editor focused on the first two task

areas defined in Taile I, editing text and predefined

symbols. For each of these editing types, the ability to

enter information at a designated place on the screen, delete

that data, and move it within the drawing space is supported.

Once an editing function has been selected, a

positioning cursor appears within the drawing area. This

cursor is moved vertically, horizontally, and diagonally

within the space by means of the joystick. The user moves

the cursor to the desired location of either text or symbol.

In the case of text entry, the user would start to type at

this point. In the case of a symbol entry, the symbol type

Is first selected via the symbol menu selection precess, then

'deposited' at the selected location by again pressing the

joystick button.

In the deletion mode, the alpha string or symbol is

selected. Once selected it is removed from the display being

91

.W * *4 * * *. . . .,

built. Selection varies depending on whether it is text or

symbol deletion. For text, the joystick is moved to the

beginning of the text to be removed and the button depressed.

This identifies one corner of the area to be blanked. Then

the cursor is moved to the opposite/diagonal corner and again

the button depressed. The user is asked to confirm the

deletion. Upon positive confirmation, the text bounded by

the window created is blanked out.

For a symbol deletion, the symbol is picked by means of

the menu selection process. When the delete symbol option is

selected, a secondary menu appears which lists only those

symbols currently a part of the format. The user then

selects from that list the item to be deleted. As with the

short cut provided to intially add symbols to the picture,

the user can also type the delete command followed by the

desired symbol name and that symbol will be deleted.

Repositioning of text and symbology follows the same

precedural form as deletion. The text area or symbol is

specified as in the deletion process. Once selected, it is

physically moved by moving the cursor to the desired new

position and pressing the joystick button.

The same process of selection is used to select alpha

fields or symbols when specifying the attributes of each.

Once selected, the user is presented with a series of

questions from DESIGNS. These questions lead the user

through the definition process for the selected object. For

the specification of x,y coordinates for the objects, the

92

.-.....

DESIGNS system provides two methods For HUD specifications

the user may define positions in milliradians of displacement

from the HUD boresight. This is the typical way HUD data

specifications are made. For heads-down displays and HUDs in

which positional data is not defined in milliradians, the

user may specify relative positions in normalized

coordinates. Once specified, the display being defined is

updated to reflect the positional data just defined.

As the display is being created, a data structure

internal to DESIGNS is created which defines the format.

This description of the format can be stored as it is for

later use, or further processed by the interpreter section of

the system. The actual data structure is quite simple. The

basic structure contains item descriptors with the associated

x,y location. The descriptor in the case of a symbol is the

name of the symbol, and in the case of an alpha field is the

string itself. Additional data defining the attributes of

the items is stored also. The attributes which are currently

handled include,

(1) scale facter,

(2) intensity or color of item,

(3) rotation angles, and

(4) an indicator specifying that the item can be
dynamically modified.

If the item has dynamic characteristics, the following

functions are supported,

(1) alteration of x,y, position and/or angles of
rotation,

93

4 ".. " ." . ''v "" .' . .' .. ' ' .' ", ' ,,. . . ,,. - ', , " "

(2) turning item on/off,

(3) modifying the intensity/color,

(4) blinking the item, and

(5) changing the value in an alpha type field.

To support dynamic updates, a secondary data structure

consisting of a set of logical flags is maintained on each

Item which can be modified.

The functions within the symbol librarian and part of

the interaction with the host processor tools are not

directly accessible to the user, but are used internal to

DESIGNS. The librarian functions are accessed at the time

that the target device is specified. Based on the definition

for the format that has just been defined and the definition

of the specific target, the librarian converts the format

definition into the series of commands that will create the

display on the target device. The host processor interface

is important during this phase as it provides the mechanism

for storage and retrieval of display lists.

The portion of the symbol librarian designed for this

effort deals with the definition for the VG target system.

The specific context is that of HUD development. Within the

library there is a specification for each defined symbol on

the VG system. For each additional target there must be a

similar specification for the device. The details of the VG

specification are given In the next section.

94

Once a HUD format has been designed, the user normally

would specify the target graphics system. The generic

display list definition defined previously becomes the input

to the interpretive portion of DESIGNS. The namelist of

symbols is traversed and the corresponding definition

specific to the VG is retrieved from the library. For this

initial specification of DESIGNS, the symbol library for the

PACER/VG system has been defined as a set of FORTRAN IV

source modules - one for each defined symbol on the PACER

system. The details of the data structures are presented in

the next section.

As the namelist is traversed, the proper module for

static generation of that symbol is retrieved from the

library. All these modules are combined to produce a single,

compilable program for the PACER/VG target. In addition the

dynamic routines necessary for each symbol are also

generated. Thus the result of this activity is a complete,

correct program to be compiled on the PACER for the VG

target. The only manual programming activity required is to

transfer the software to the PACER, compile it, and create

the dynamic module which communicates with the simulation.

During this activity there is a great deal of

interaction with some tools already developed on the SEL

system. A previous design effort within the facility

produced a package which permits a very compact storage of

source programs on the SEL disk. This tool, Source Library

(SOURCLIB), has been used as the storage mechanism for the

95

DESIGNS symbol libraries. Some tuning of the package to make
it better suited for the DESIGNS system were effected. These

changes deleted the interactive portion of the basic SOURCLIB

package and made it directly accessible to DESIGNS [Luhrs,

1983). Many of the I/O functions of the SEL support system

are also used to store and retrieve information.

Two other tools within the DESIGNS toolbox have been

discussed in previous sections. While neither the dynamic

test capability nor the documentation facility were designed

to any level of detail, some discussion of them is important.

The documentation facility is to be built around some of the

existing capabilities in DESIGNS. The capability to enter

textual data can be extended to support documentation. A

detailed plan of how such documentation should be used will

dictate the type of query capability, and database structure

that is necessary to adequately support it.

The dynamic testing issue was not addressed in any

detail during this effort. The data structures specifying

those attributes which can be modified already exist within

the system. The tools must be added which can access those

structures and modify the appearance of the format being

manipulated.

Critical Tools Implemented

As with any major effort, not all of the pieces

envisioned were finally implemented and tested. Since the

96

-a

" ' '.. . ,',.,' . 'e ' Z, j :..'. a ".:.. .- , .- ,,.. •-.. , . ' . .

m

focus of the effort was to lay out a roadmap for a fairly

robust system, while focusing on the more Immediate problems

faced in the simulation facility, a subset of tools was

identified early on which expedite development of HUD

symbology. More specifically, the critical area identified

was the development of software supporting HUD development

for the VG system.

Another critical area identified was the need for better

standardization and commonality of the software modules

developed within the facility. The need for some level of

integration for the various existing graphics programs was

quite apparent. Based on this, four specific tools were

identified, designed, coded, and tested as a direct result of

this thesis activity. Additional tools are being researched

at this time for inclusion into the project and will be

discussed in the concluding chapter.

The four capabilities developed were,

(1) the preliminary buildup of the formalized DESIGNS
user interface,

(2) a 'global' executive program which integrates all
graphics related software within the facility, and
provides the initial portion of the DESIGNS user
interface,

(3) a complete definition and implementation for a
standard data structure In all display software
pertinent to VG hosted symbology, and

(4) an 'auto-build' tool which automatically generates
syntactically correct source code for the PACER/VG
system from pre-existing symbols.

a97

• " 97

U

.

. . **?.. **

The description of the DESIGNS user interface, both the

hardware components and the dialogue structure, has been

given in the preceeding sections. What follows is a complete

description of the other items.

The Graphics Executive Program

The graphics executive program functions as the top

level of the DESIGNS user interface. In addition, it

provides the framework from which ALL graphics related

software packages are accessed by the facility users. This

package is hosted on the SEL 32/2750, is completely menu

driven, and provides the user with a single program from

which all other graphics programs can be accessed.

When the graphics executive is invoked from a SEL

terminal, the main menu presents the user with the graphics

hardware options directly accessible to the SEL. Currently

two devices are fully implemented (the two Megateks), and a

stub is provided for the Gaertner raster system that is to

become part of the system in mid-85. The menu can be

extended to include other devices as they are added. The VG

is not included at this level, since the SEL has no direct

access to it.

The user selects the device which is to be used for the

application. The executive software first queries the device

to determine its status. If the device is busy, the user is

presented with a set of alternatives. The user may elect to

98

-[V !

i .' °' .',_ , . ._ "L,'. '. 1 , . , ,'. -. -. 1,%;- %7 .- "% -_ - 'C .. Z- 'V - . , _. i.

abort the task currently running on the device, designate an

, - alternate device for use, or quit the process entirely.

If the device is available, a second menu is displayed

which lists the various graphics programs which are currently

implemented for the specified device. Only those programs

which can be executed on the selected device are listed so

that the user can not inadvertantly select an incompatible

program. This menu is presented in a paging structure so

that the user may scroll through as many options as are

available. The paging permits addition of new graphics

programs in the future.

Once an application is selected and activated, the user

quits the software option menu and is returned to the

initial, hardware selection, menu. From here another device

and application can be selected in the same fashion, or the

user may elect to exit from the graphics executive. Any or

all of the activiated applications can then be used.

This package is used both to initiate the execution of

graphics applications and to terminate them. Each menu has

been structured to permit easy addition of new packages.

Throughout the selection process, errors are tested, and

English-type phrases defining them are presented to the user.

Appendix G contains detailed requirements for the executive.

Appendix H contains formal documentation for the system,

including the process by which new applications are added.

99

,-- ', ' '. , ,-. .,- . p * w, w " -. ".- - -, '.. . • .-" , . ".'* .'.. *' ' - . -'...'-

DESIGNS itself is viewed as an application program fora..

graphics. Thus it is also accessed through the graphics

executive.

Associated with the executive structure resident on the

SEL machine, there is a data structure which defines how the

simulation programs communicate with the common applications.

Several of the Megatek applications are variations on a

single display format. Parameter displays can be displayed

as,

(1) a 40 parameter display, with two columns of
aircraft data plus graphical control buttons for
aircraft modes,

(2) a 24 parameter display, with a moving map display,
and

(3) a 24 parameter display, with a tracking pipper
display.

To promote better commonality among related displays, a

single data structure has been defined for passing data

through shared memory between the SEL 2750 and the SEL 77's

which have the simulation software. This array of data

includes control data governing the update of information on

the display, all the data describing the function keys,

status data, and parameter names and data values. The

appropriate subset of this array is used for those parameter

displays which contain only 24 entries.

The definition of this data structure was accomplished

based on the philosophies which have grown out of this thesis

effort. It provides a single structure for those displays

that are logically related, which minimizes the integration

100

that is required on the simulation end.

The VG Database Definition

The definition of a standard structure for the display

list pointers maintained by the VG support package has been a

key issue in the DESIGNS project. The VG system functions by

repeated, rapid execution of a display list which contains

coded information specifying the graphics primitives which

are to be executed. Within the display list, special

pointers may be established so that dynamic updates may be

accomplished rapidly, without the necessity for redrawing the

entire picture.

These pointers into the display list are 'marked' as the

list is being initially built. It is important to understand

how the VG display functions to understand the overall

importance, and usefulness of the new structure that has been

developed for the VG.

The display list itself is an array. As each graphics

subroutine call is executed, a command, with all necessary

argument values, is placed into that array. As the array is

being built, the VG software package tracks the length of the

array. All calls to the VG support software require two

pointer arguments - an input pointer which specifies the

current length of the display list (and thus indicates where

in the array the current command will be written), and an

output pointer which specifies the length of the array after

101

. --'- -'.. . -... .

the command and its arguments have been added. To maintain

* " the proper integrity of the display list, the output pointer

from a graphics routine MUST be the input pointer to the NEXT

graphics routine.

If any given command is to be updated in the dynamic

loop of the package, the pointer to it within the display

list (the input pointer to its subroutine call) must have a

unique name. Then it can be individually referenced later in

the program. The most straightforward way to preserve these

unique pointers is in a FORTRAN array, rather than use many

unique variable names. Traditionally, for VG development a

dimensioned array, KPNT (400), has been maintained as the

pointer array for dynamic updates. This array was contained

in a global common so that it could be accessed by all static

and dynamic routines.

For clarification of this point, the following excerpt

from a VG program is included in Figure 22. This small

segment draws a series of lines on the screen, and sets up

the system for subsequent translations of the lines. The

first pointer argument within any call is an input to the

graphics primitive being called and indicates the current

position in the display list where new primitives can be

drawn. The second pointer argument is an output from the

graphics primitive containing the new position in the display

list where subsequent primitives will be drawn.

102

C. b ~ * .# . . .
C f q q , ,. *..

,~
-o

call trans (0, 0, 0, KPNT (1), KOUT)
call disvec (IXi, IYI, IZI, KOUT, KOUT, IX2, IY2, IZ2)
call disvec (IX3, IY3, IZ3, VOUT, KOUT, IX4, IY4, IZ4)
call disvec (IX5, IY5, IZ5, KOUT, KOUT, IX6, IY6, IZ6)
call trans (0, 0, 0, KOUT, KPNT (2))

call ????? (......... , KPNT (2), KPNT (3))
call ????? (......... , KPNT (3), KOUT)

FIGURE 22
Excerpt from VG Module, Illustrating Pointer Use

Notice that the initial translate call has a unique

input pointer name and the output pointer from that routine,

KOUT, is passed to the next routine as its input pointer.

This maintains the integrity of the display list. The same

name is used for both input and output pointers in these

calls. This is normal and syntactically correct. The called

modules use the first argument as the starting point to write

in the display list, and return the end value in the last

one.

In the past, large display packages have been written

which used the globally declared KPNT array. These

applications contained numerous symbols and could require in

excess of 250 of these unique pointers into the display list.

Quite often the static generation of all these symbols was

written in one long routine or in a series of loosely

organized modules with a global common interface so that the

pointers could be easily passed from one graphics call to

103

, --"- ' " ". L - , -' ° , ° - .- 5 b . %.. = -, . - I - -

another.

The problem with this use of the global pointer occurs

when the software must be modified. Referring to our very

simple example in the figure, suppose the user wishes now to

rotate the lines first, followed by the translation. To

maintain a unique input pointer for the rotation, there are

two options. One would be to use a new variable name such

as: call rotate (0.0, 0.0, 0.0, IROTATE, KPNT(1)). If the

input pointers are all to be in the global KPNT array then

the rotation call becomes: call rotate (0.0, 0.0, 0.0, KPNT

(1), KPNT (2)).

With the latter case, which was most often used to keep

the pointers in KPNT, all subsequent KPNT entries must be

modified since a new KPNT value has been added!! In the

-: example this is not a tremendous amount of work - KPNT (2)

becomes KPNT (3), KPNT (3) becomes KPNT (4), etc. In large

applications this becomes a significant workload, which is

dreadfully prone to errors.

A database structure for maintaining the display list

pointers, as well as a standard form for each symbol module

was developed to improve VG software development. Under the

new methodology, each individual HUD symbol is statically

generated within its own module. The unique pointer names

are maintained within each module. This permits

modifications to any symbol module without updating all

* successive pointers. The continuity of the display list is

maintained by keeping a master array of all the unique

*104
S.

%;~~A ..v .>.- * * .. * .*.* .. .*. - *

pointers in the global KPNT array. However in the new

structure individual routines DO NOT modify KPNT, they modify

their own internal pointers. By knowing how many unique

pointers each symbol requires, the internal pointers are

equivalenced into the proper place in the master array.

A sample symbol module is illustrated in Figure 23.

Every module has an input and an output pointer. At the main

program level these are passed from one module to the

successive module. Looking at this code segment several

points can be made.

(1) all modules are identified with a three letter
prefix which should indicate what the modules
function is (static routines end in 'STC, while
the dynamic routine for a symbol ends in 'DYN'),

(2) the same prefix is used for the unique pointers in
the module (xxxPNT) as well as the non-unique
pointers used to pass in cases where no later
updates are required (xxxOUT),

(3) the number of unique symbols required by a given
routine is indicated in the dimension statement for
xxxPNT,

(4) the first unique pointer for any given symbol is
equivalenced into the KPNT array, this equivalence
must appear in both the static and dynamic routines
for a symbol, and

(5) all the dynamic transformations that could be made
to the symbol are accounted for within the original
static module (the dynamic module can then change
whatever ones are appropriate).

Using this structure isolates almost all modifications

to a synbol within the confines of its own static and dynamic

routines. It also permits the symbol module to be used for

many simulations even though individual simulations may want

S -V

105

• € -, , -.', , ,',-, , %, , , . - .- - , , , . ,. , ., . , . ','.-. ... ,-,. -%- -

C HUD LIBRARY : FIXED AIMING RETICLE - STATIC

C * * * * * * * * SUBROUTINE AIMSTC * * * * * * * * *
C * *

C

SUBROUTINE AIMSTC (AIMIN, AIMOUT)

COMMON / CNTRL / CON (25)
COMMON / POINTR / KPNT (400)

DIMENSION AIMPNT (2)

INTEGER AIMIN, AIMOUT, AIMPNT
INTEGER KPNT
INTEGER MEDIUM, SOLID, INNER, OUTER

REAL HUDSCA, RADIN, RADIUS

EQUIVALENCE (KPNT (xxx) , AIMPNT (1))
EQUIVALENCE (CON (1) , HUDSCA)
EQUIVALENCE (CON (9) , MEDIUM)
EQUIVALENCE (CON (10) , SOLID)

DATA IXCI, IXC2, IYCI, IYC2 0 0, 0, 0, 0 /
DATA RADIUS, RADIN / 25.0, 1.0 /

OUTER = RADIUS * HUDSCA
INNER = RADIN * HUDSCA

AIMPNT (1) = AIMIN
CALL TRANS (0, 0, 0, AIMPNT(1), AIMPNT(2))
CALL INTEN (MEDIUM, AIMPNT(2), AIMOUT)

CALL CIRCLE (SOLID, IXCI, IYCI, AIMOUT, AIMOUT)
CALL CIRCLE (SOLID, IXC2, IYC2, INNER, AIMOUT, AIMOUT)

CALL INTEN (MEDIUM, AIMOUT, AIMOUT)
CALL TRANS (0, 0, 0, AIMOUT, AIMOUT)

RETURN
END

FIGURE 23
Sample Code for a Static VG Symbol

to dynamically drive it differently. One additional change

may be required outside the symbol modules. If the number of

106

W- ,- r. -. -m -I - - - - -- . U 7 ' -

unique pointers for a symbol changes, then the equivalence

statements for that routine and any subsequent routines must

be altered to reflect that change. This change, even if done

manually, requires the modification of perhaps a couple dozen

lines of code as opposed to potentially a couple hundred.

There are several valid arguments that can be raised

regarding the use of the undefined equivalence statement in

the modules. There are certainly other ways of implementing

this to achieve the same result for the static generation of

symbols . The equivalence of KNPT (xxx) with the internal

pointer xxxPNT (1) tracks the current 'top' of the display

list. The actual value of xxx is determined at the time the

modules are linked together into a single source module.

This same capability can be achieved by passing the value of

the curent display list pointer 'top' as a variable ,tUL the

module and have the module return the next value. In

actuality the xxxlN and xxxOUT pointers do just that in order

to properly link modules together.

The equivalence is employed in order to support the

eventual dynamic modification of the symbol attributes

without having to make all the local pointers common and

without having to compute the input pointer when a dynamic

change is required. The equivalencing technique provides

absolute pointers into the display list array, which is

faster than computing the pointer value. Particularly with

the PACER/VG system, which Is an aging, slow system, the

speed issue is a major one when HUDs must run in less than a

107

100 millisecond cycle time.

* The equivalencing technique has been employed, not

because it is the best tool in terms of structuring the

software, but as a result of considering the FORTRAN IV

language issues and the real-time requirements imposed by the

antiquated PACER/VG system. In addition the automated

modification of the source module by the DESIGNS system is a

precusor to more advanced capabilities in which the entire

software module will be created and/or modified by the

DESIGNS environment. The dynamics of the module can be

linked to appropriate simulation variables, which will DEMAND

that such source code modification is supported.

This particular issue touches on one of the most

controversial areas of the thesis development - that of

automatic generation of software. There are strong arguments

both for and against having a software system generate

another software system. It is the contention of this thesis

that it is practical, and necessary for the future of

simulation graphics, if such development is to be made with

any kind of revolutionary improvements.

The main line program for the VG software has also been

standardized so that it contains only the static generation

list, the dynamic loop, and the appropriate equivalencing of

pointers. From the main line all static modules are called

in the form : call xxxSTC (xxxIN, xxxOUT). Again remembering

the need to maintain the display list integrity, the output

pointer of a routine becomes the input pointer to its

108

successor. Thus if call yyySTC (yyyIN, yyyOUT) follows the

call to xxxSTC there is an equivalence statement for xxxOUT

to yyyIN.

This attention to standardization across all the modules

was two-fold. First of all, it definitely supported better

modularity in the VG software. The structure is therefore

easier to modify by a user. In addition, if the structure

can be sufficiently defined and implemented in a standard

fashion, then automatic tools for modifying it can be

designed.

The PACER/VG 'Auto-Build' System

The ultimate goal in developing the data structures for

the VG software packages was to provide a consistent system

so that an automatic tool could be developed to make required

changes when new symbols were linked together to form a HUD.

The changes discussed above are very repetitive, and

quantifiable. When symbol modules are linked together there

are three steps required,

(1) create the mainline equivalences, with the static
and dynamic calls,

(2) based on the number of pointers used in each
module, compute the proper equlvlence point into
the KPNT array, and modify the equivalence
statement in both static and dynamic routines, and

(3) assemble all the routines into a single file for
compilation.

109

'p

.. i*-l* .- l .*- -' . -i,-V "' " " ' " ' : " "" -"" %""" ""-.. e"'-""q." %: - :m""" ' .-'. ""V "":'""V

Such a tool was developed as part of the DESIGNS effort.

This tool, while initially developed as a stand-alone module,

is actually part of the VG definition module within the

DESIGNS interpreter. This tool accepts a list of names for

the symbols needed in a new display. These names are encoded

as the same three letter prefix used in the individual

modules. A master table containing the prefixes and the

number of unique pointers used by that symbol is maintained.

As the user specified namelist is processed, the master

table data is referenced. The files (static and dynamic) for

a symbol are retrieved, the equivalence value calculated, and

the files linked into a single file. The first symbol

specified always has its first unique pointer equivalenced to

KPNT (1). Subsequent symbol equivalences are computed. The

value is the sum of the current KPNT index plus the number of

pointers used in the current module. For example if three

symbols were requested, 'xxx', 'yyy', and 'zzz' and module

'xxx' required 4 pointers, module 'yyy' required 7, and

module 'zzz' required 2, the following equivalences would be

generated -

(1) module 'xxx' - equivalence (xxxPNT , KPNT (1))

(2) module 'yyy' - equivalence (yyyPNT , KPNT (5))

(3) module 'zzz' - equivalence (zzzPNT , KPNT (12))

As a stand-alone tool, the namelist is provided by

creating a file containing the three letter prefixes. The

master table is maintained as a separate file. Each of these

files can be created and modified using the standard editor

110

* -.!...

* * .1

capabilities on the SEL system. The namelist will be

automatically generated from within DESIGNS in the fully

integrated system.

11

VI. Testing the DESIGNS Concept

The majority of the DESIGNS testing has been

accomplished on individual modules. The graphics executive

and the PACER/VG data structure have been used as tools

within the facility for some time. Various users have had

occasion to use them. Both of these tools are principally

data structures. There are no sophisticated algorithms which

had to be tested for correctness.

The graphics executive software was tested by using the

system. A complete walkthrough of all the menus and

functions was performed to verify that the system operated

according to specifications. Detailed testing was

accomplished to prove that the device status could be

properly determined. The stub for an additional graphics

device was added to verify that new devices could be added to

the menu system without encountering major difficulties. The

method for accomplishing that was verified and documented.

The PACER/VG data structure has been tested by

converting existing VG software to the new structure, and

verifying that the resulting HUDs function correctly. New

software using this structure has been developed by several

users. This use has indicated that development time is

greatly Improved when the superstructure for every added

module already exists. Modification to existing modules has

been minimal since the conversion effort. This indicates

that, indeed, the design has accounted for the appropriate

112

p. . .* '.*....-.....-.......*.-.,*. .'.*... -.

symbol dynamics.

In each of these cases the testing has been qualitative.

There is no quantitative measure to assess all of the effects

these two tools have had. In each case the design has proven

to be robust enough to accept changes. Users have been

receptive to DESIGNS, with very few negative comments. All

of the current simulations within the facility are using both

of these new structures successfully.

The auto-build capability for the PACER/VG software has

been tested more rigorously. The key areas that were tested

include,

(1) verifying that all symbol modules specified are
actually retrieved from the symbol library (the
special cases for no modules and a single module
were tested in addition to an arbitrarily large
number of modules),

(2) validating manually that the equivalence values are
computed correctly for arbitrarily specified
symbols, and

(3) testing the final linked source code file by
compiling it and running it on the VG system (each
individual module is compiled to test correctness
before it is added to the symbol library).

In each case the system performance was determined to be

correct. The final test has been to interface an auto-built

HUD to a running simulation. This has been successfully

accomplished on several occasions.

The most positive aspect of the testing of the

auto-build feature has been that it is significantly faster

(and certainly more accurate) than building the file by hand.

Static displays that can take a couple of hours to create

113

llI l I -. .. .i . . -i I iI -i ii i iI IIiti IIWI "i I' i I ", " " , ' * * f"". " - -

manually can be created in a matter of minutes using DESIGNS.

"' The features of the user interface and editor have been,

and continue to be tested, in a piecemeal fashion.

Preliminary work on the text editor facility was actually

done on a micro system. This work served to test some of the

menu concepts and the editor specific mechanizations in order

to identify the most appropriate method to use in the

integrated DESIGNS environment. The micro system was used as

all other systems were unavailable at the time. The menu

concepts have been transported to the SEL host in a more

refined form based on the results of this testing.

Again much of this testing has been qualitative. As has

been discussed before, there are no accepted, quantitative

measures of the goodness or correctness of a user interface.

The menu techniques seem to be acceptable. Some refinements

have been made to tune them better for the facility and

users. Special attention has been paid particularly to the

interfaces between modules of DESIGNS to guarantee the data

is passed properly. Typically this has been accomplished by

testing and validating the output from a given module, then

validating the results the following module produces from

that input. Where possible these tests have been performed

in such a fashion that the results can be compared with

existing graphics software that has been generated in a more

traditional way.

114

• ' ~~~~~~................. '-.................-... '.

VII. Conclusions and Recommendations

Overall the DESIGNS effort has been successful.

Certainly the initial plan for the full graphics development

environment has not been realized with operational software.

However the tools that have been developed have improved

productivity, have provided a definitive structure in which

to develop software, and have produced an infrastructure

under which future software can be integrated. These results

are certainly those intended for the development effort.

Conclusions

The major difficulty with the DESIGNS activity has been

In scoping the project. As with most theses, the original

project definition was entirely too broad to be considered as

a single thesis effort. The single most critical failure of

the activity has been that the effort was never adequately

focused on a specific subject area reasonable for thesis

development.

Coupled with the problem of proper scope, was the

difficulty of completing the thesis as a part-time student.

The demands of other work projects often must take precedence

over any thesis activities. This has both prolonged the

thesis effort and has made the product less definitive in a

sense. With the extended period of time involved, and the

work not being performed in a continuous block of time, the

focus of the project tended to drift. Many new Ideas and

*. 115

. . .

* -. L 1 - - - .|*- -- -,_v .;

techniques were eventually included that were not part of the

' original design concept. While this is a very real problem,

many of the thoughts that developed over time produced a more

in-depth understanding of the task at hand.

As a consequence, both the research and the overall

design efforts stretched out and proceeded to cover many

areas related to the broad concerns of DESIGNS, its

environment, and other closely related issues, but did not

necessarily define a manageable thesis topic. Thus, these

many sources of Information served to keep the scope of the

thesis entirely too broad to permit its complete development.

While this sounds particularly negative, the overall

effect has been to produce a far better basis of knowlege for

the environment definition and for more futuristic

extensions. It has made it possible to describe the entire

environment design from the standpoint of functional

requirements. In the process it has required a great deal of

time and yielded but a small set of operational tools.

However, these tools have already had a profound effect

on the development capabilities within the sponsoring

facility. Each of the capabilities selected for

implementation and testing, has indeed proven itself equal to

the challenge. They have served to accomplish an original

thesis goal - that of enhanced productivity through a set of

software developer's aids. It is because of the acceptance

and success of this initial tool set, that DESIGNS can be

considered a successful project, even though the full DESIGNS

116

* ,* * p.

environment has not been completed.

It is apparent from the above discussion that the order

selected for the development of the tools has not been

optimum from the standpoint of demonstrating the overall

system design. However, with facility needs as a primary

driver, the order selected has been more immediately

responsive to facility demands. The improved development

capabilities on the PACER/VG system have made it possible to

take two engineers totally untrained in the area of graphics,

and have them producing useful software for the system within

two weeks. The framework of the top-level graphics executive

has reduced the confusion users had when using the system.

Before the advent of the executive, users had to remember all

the individual file names in order to run programs. Now the

i .o single program name is all that is necessary to know. The

software is very easy to use, requiring no assistance beyond

instructing all users as to the name of the executive

program.

It is critical at this point that the DESIGNS effort be

continued. Based on the Initial success of the somewhat

isolated tools, it seems reasonable to conclude that

productivity can be further improved with a fully functional

DESIGNS environment. Interest in the concept proposed with

DESIGNS has been growing tremendously. The ideas and

techniques developed with DESIGNS have been accepted as the

way to progress into the future of cockpit display design.

Even more sophisticated capabilities have been proposed.
.L

• 117

S.

Recommendations

In order to provide timely support and information to

the organization, the DESIGNS technology should be

continually refined and additional capabilities developed for

it. The area which should be pursued initially is the

completion of the user interface. The full dialogue should

be completed to support all of the options from the menus as

well as the short-cuts. This effort offers the immediate

payback of linking together all of the tools developed to

date. Also it is fairly well completed and would require

only a small amount of effort to finish it.

In completing the dialogue, the options which are

stubbed out, can be expanded. The principal option, that

must be expanded, is the graphics editor. At the present

time, the graphics editor manipulates libraries of existing

symbology. That is a major improvement In the way to do

business, but falls far short of what DESIGNS should be able

to support. The editor needs to be expanded to support

creation of original formats by 'drawing' lines, arcs,

conics, alphanumerics, and other graphic primitives. This

task should be the precursor to adding the capability to

'paint a picture' with the editor. With the addition of the

expanded editor functions more complex, pictorial displays

can be supported.

Subsequent to the completion of the full VG system

support and editor functions, there are several activities

118

that could reasonably be pursued. These include,

(1) addition of other target devices, particularly the
Gaertner system when it becomes part of the
facility,

(2) transitioning all of the text editor capabilities
onto the SEL host,

(3) filling out the stubs within the environment to
support on-line documentation and dynamic testing,

(4) reconsidering how the symbol libraries for the
various systems are actually handled, and

(5) identifying new tools which can continue to support
the growing graphics needs, such as the
implementation of an image editor.

The symbol library issue mentioned in item 4 is really a

key issue. The methodology adapted for this preliminary

effort hinged on the fact that the facility had fairly

extensive libraries of symbols that are common to a large

number of HUD displays. Based on the need to create tools

which could off-load some of the workload encountered when

creating and modifying HUDs, the structure for the VG

software and the auto-build feature were developed. These

made use of the existing library of symbols.

However, that library of symbols is specific to the VG.

There is also a parallel library that was developed for the

Megatek. For future activities it is not reasonable to

assume this library will be replicated for each new graphics

system that becomes part of the facility. An extension of

the internal generic display list to contain a macro

description of oft-used symbols offers a better potential

solution. The same macro could then be interpreted for each

119

available target.

It was reasonable at the time to try to use the existing

tools within the facility and build on them. However, some

consideration should be given to the development of a more

generic structure which could require only one library.

There are some significant issues to be considered when doing

that. These issues revolve around the questions raised

earlier concerning the automatic generation of software.

Issues such as readability, maintainability, and reliability

have been very important with conventional software systems.

Ultimately, these will not be issues in the traditional

sense. DESIGNS, or some extension of it, aspires to be a

revolutionary new approach to graphics software design and

support. In its most sophisticated form it would be capable

of far more than has been postulated in this thesis.

Ideally, it would not only produce code for displays on any

graphics target, but could automatically establish the

required dynamic 'hooks' with the simulation software.

In the future if the entire system is so automated, one

may not have concerns about issues of readability, because

users will never need to look at source code. The term

'source code' as it is used today would be a misnomer. It

would not be source in the sense that it is produced today,

but WOULD be a type of input source for graphics devices.

This type of source software would be maintained and tested

within the DESIGNS environment, thus addressing those issues

at an entirely different level.

120

"" "''" %" .w.-. ,," '"" " "" " " , im'"
° "

" " - m-""""" "'""m"""! -"
" "

"
"

""
-

""
"

"T". ."".. . ."'".".'..a
' '

"-

U' -. 2 ... - .L6. - V _:. 1: - -.

The future of DESIGNS and systems like it are based on

accomplishing computing tasks in a fashion unlike those known

today. The initial steps taken in DESIGNS have in some ways

been constrained In the present due to the facilities which

it must support and which are available to support it. The

definition of DESIGNS looks toward those future enhancements,

and the current interest in DESIGNS-like environments will

push for revolutionary new ways to support graphics design.

A serious consideration for future activities with

DESIGNS is the choice of language in which the software is

written. FORTRAN, even with the nice structures and

extensions provided in the 77+ version, Is still FORTRAN -

with all its woeful shortcomings. Pascal, although more

structured than FORTRAN with better support for data

structures, falls short in the critical areas of I/O

capability and direct interfacing with hardware.

The complexities of the graphics design environment,

with its many data structures and interfaces, demand a

language rich in data structures and powerful enough to

support reliable, maintainable, though intricate interfaces.

The best candidate language is Ada. Ada can provide the

software facilities which encourage the desired

'revolutionary' approach in the software implementation.

When examined, it can be readily seen that the entire DESIGNS

definition closely parallels the conceptual design of the Ada

Programming Support Environment. The parallelism between the

APSE and DESIGNS provides an excellent source of information

121

* , o , , .)w . L . . ''. '. , .."*.. "- -' " ." , *, -, S." * " . : . ,, - ," , *, ,",b

-. -

for refining the DESIGNS structural definition.

Of equal Importance is the nature of the user

workstation. All the DESIGNS work was accomplished on a

stroke writing system. This is not adequate for the complex

work planned in the future with raster and/or CIG systems. A

much more powerful CAD type of raster workstation is required

to meet future needs.

Future Directions for DESIGNS

Based on the results seen to date, the future of the

DESIGNS package seems to be bright. It needs to remain in

development, preferably in such a way that the Intermediate

tools can be used just as the initial tools have been

functional during expanding development. It is the intention

of the sponsoring facility and the author to continue with

the development well after the conclusion of this preliminary

thesis effort.

With the assumption that the DESIGNS system is indeed

the concept of the future for cockpit design work, it is

highly important that the system be reworked in Ada in order

to provide the best possible language environment. It would

seriously diminish the power of the environment to burden it

with a language not capable of serving DESIGNS' lofty goals.

122

Bibliography

1. ACM SIGGRAPH. Status Report of The Graphics Standards
Planning Committee. V 15 7 Tigii-sY-TM).

2. ACM SIGGRAPH. Computer Graphics - Special GKS Issue.
(February 1984T.

3. Air Force Flight Dynamics Laboratory. Research and Technolog
Plan. RCS:SYS-DLX(A)-7402. Wright Patterson AMl, Ohio:
XAFFL, August 1981.

4. Air Force Wright Aeronautical Laboratories. Plan for
Improvement of Engineering Flight Simulation-i-apfity.
AFWALtFU tie-Tear Plan, preliminary draft. Wrih
Patterson AFB, Ohio: AFFDL, February 1982.

5. Auld, R., K. Lang and T. Lang. "University Computers Users:
Characteristics and Behaviour" in Computing Skills and the
User Interface, edited by M. J. oombs and T l I
1ewYork: Academic Press, 1981.

6. Aviation Week Staff. "Advanced Simulation Techniques in Use",
Aviation Week and Space Technology, Vol 116 (Issue 4): 81-83
(January =S-, 1792).-

7. Aviation Week Staff. "Digital Avioninc Unaffected by
Downtown", Aviation Week and Space Technology, Vol 115 (Issue
45): 181-183TNWovemb-er,'-T 8TT.

8. Aviation Week Staff. "European Avionics Systems Advance",
Aviation Week and Space Technology, Vol 115 (Issue 45):
1 13(o-veme-9- 81). ' -

9. Aviation Week Staff. "Full-Color Cockpit Display Tested by
Royal Air Force", Aviation Week and Space Technology, Vol 115
(Issue 45): 185-188 (November-9,--T81"T

10. Basehore, Daniel D., Human Factors Engineer. Personal
interview on the CADET system design. Air Force Wright
Aeronautical Laboratories, Crew Systems Development Branch,
Wright-Patterson AFB, Ohio, 15 April, 1983.

11. Bateman, L. F. "An Evolutionary Approach to the Design of
Flight Decks for Future Civil Transport Aircraft", Aircraft
Engineering, Vol 50 (Issue 593): 4-10 (July 1978).

12. Becker, Rick. On-going exchange of technical data. 1982-83.

123

A' 13. Boeing. Final Report on Pictorial Format Development to the
Gov't, 1 March 1983.

14. Booch, Grady. Software Engineering with Ada. Menlo Park:
Benjamin/Cummings Publi ng Company,T-c7. 1983.

15. Butler, Thomas W. "Computer Response Time & User
Performance", 58-62 (December 1983).

16. Curry, Renwick E. and Earl L. Wiener. "Some Human Factors
Aspects of Cockpit Automation", The Human-Machine Interface
in Airborne Systems. 22-26. IErE7AESS Symposium, Dayton
DW io, Decemb*er-Tg.

17. Damodaran, L. and K. D. Eason. "Design Procedures for
User Involvement and User Support" in Computing Skills and
the User Interface, edited by M. J. Coombs and-JW .
My. f-few York: Academic Press, 1981.

18. Dudley, Timothy K. "Computers and Graphics: A Technology
Comes of Age", Part II, Interactive Computer Graphics
Systems, edited by William C. House. New York: Petrocelli
BkooTsInc., 1982.

19. Eason, K. D. and L. Damodaran. "The Needs of the
Commercial User" in Computing Skills and the User Interface,
edited by M. J. Coombs and J. Ly. New Tor
Academic Press, 1981.

20. Ewing, D. K. and D. W. Tedd. "A Display System for
Processing Engineering Drawings - 'THREAD' - Three
Dimensional Editing and Drawing", Advanced Computer Graphics:
Economics, Techniques and Applications, edited byR.D.
Parslow and R. Ell1ot ee. 245-. New York: Plenum
Press 1971.

21. Foley, J. D. and A. Van Dam. Fundamentals of Interactive
Computer Graphics. Reading, Mass.: Addlson-We-Tey Publishing
company, 1982.

22. General Dynamics. Display Control Document for the AFTI/F-16
Multipurpose Display Set. 20PP022A, 7 July 1980.

23. General Dynamics. Technical System Description. 16PR2337,
pg 8-2. 30 April 1983.

24. Gordon, Mark. "NAPLPS not just for Videotext", Electronic
Products, 61-66 (August 15, 1983).

25. Grimes and Ramsey, "How to Design User-Computer Interfaces".
Tutorial notes. SIGGRAPH '82 Conference, Boston, Mass., July
27, 1982.

124

F°. ° %.

26. Hare, E. W. "COMED - The Cockpit Display of the Future",
Aircraft Engineering, Vol 50 (Issue 593): 17-19 (July 1978).

27. Holt, A. P., D. 0. Noneaker and L. Walthour, "A Survey of
New Technology for Cockpit Applications to 1990's Transport
Aircraft Simulators". NASA Contractor Report 159330,
Contract NAS1-15546, December 1980.

28. Hubbold, R. J. "TDD: An Interactive Three Dimensional
Drawing Program for Graphical Display and Llghtpen", Advanced
Computer Graphics: Economics, Techniques and Applications,
edited by .- D7 Parslow and T EiTtOGen. 1035-1047.
New York: Plenum Press 1971.

30. Jacob, Robert J. K. "Execatable Specifications for a Human
Computer Interface", Human Factors in Computing Systems.
Special Issue of SIGCT'BlTeTin: 29-3TDecember3T.

31. James, E. B. "The User Interface: How May We Compute?" in
Computing Skills and the User Interface, edited by M. J.
Coombs andJ. L.- XyY-. Irew York: Academic Press, 1981.

32. Jauer, J. A. and T. J. Quinn. McDonnel Aircraft Company
Final Report. Pictorial Formats, Volume I Format
Development. AFWAL-'Tr-1gT3T VoTumeT.- Wright Patterson
AFB, Ohio: AFWAL, February 1981.

33. Kaiser Electronics, Inc. Technical Manual Describing SDS
Operation. 1-170. 1983. Internal Tech. Memos defining
command structure. 1984a, 1984b.

34. Kupka, I. and N. Wilsing. Conversational Languages. New
York: Wiley-Interscience Publication, John' Wiley & Son Ltd.,
1980.

35. Lewis, James L. "Operator Station Design System: A Computer
Aided Design Approach to Work Station Layout", Proceedings of
the Human Factors Society - 23rd Annual Meeting. 55-58.
T979.

36. Lieberman, David. "Graphics Standards Bridge Hardware
Differences ", Electronic Products, 49-53 (August 15, 1983).

37. Lizza, Gretchen D., Brian Howard and Carole Islam. "MAGIC -
Riding the Crest of Technology or Do You Believe in Magic?".
Report documenting the MAGIC simulation capability. Flight
Dynamics Lab and the BDM Corporation, Dayton, Ohio. 1983.

38. Lockheed. Status report to government regarding Transport
Cockpit Design. 1984.

125

-l wb,- * a a . a a ~ *

39. Luhrs, Richard A. SOURCLIB: An Interactive Program for
Source Code Librar Keeping Un-er MPX 1.4.
X F I'-TF-0-185- D. WrighT_-Pa!tTson KFB, Ohio: AFWAL.
August 1983.

* 40. Martin, James. Design of Man-Computer Dialogues. Englewood
Cliffs, N. J.: Pretlce--Rall, Inc., 19/3.

41. Moss, Richard W., Human Factors Engineering. Series of
interviews and briefings on advanced cockpit design. Air
Force Wright Aeronautical Laboratories, Crew Systems
Development Branch, Wright Patterson AFB, Ohio. Jan-Aug
1984.

42. Mulley, William G. "Future Military Systems", The
Human-Machine Interface in Airborne Systems. 147-T8.
IEEE/AESS Symposium, DayT -n, Ohio, Dbcember 1980.

43. Mysing, John 0. and Michael L. Gravely. "The Role of
Digital Technology in Future Cockpit Systems", The
Human Machine Interface in Airborne Systems. 37-T6.
IEEE/AES S3ymposium, DayTE'n, Ohio, December 190."

44. Newman, William M. and Robert F. Sproull. Principles of
Interactive Graphics (Second Edition. New York: Mcraw-lTTll
Book Com~pany7T979.

45. Norman, Donald A. "Design Principles for Human-Computer
Interface", Human Factors in Computing Systems. Special
Issue of SIGVRT TTuiletitn: I10 (December1 .

46. Pavlidis, Theo. Algorithms for Graphics and Imaging
Processing. Rockville, Md.: mputer 5cT-ePr-ess, 1982.

47. PLAID: Panel Layout Automated Interactive Design, An
Tvervie GoalsUbjectives, and Extensions. Cont ictor
Report. Houst-on, TX.: Rothe D evelopment, Inc., 1979.

48. Quinn, T. J. McDonnell Aircraft Company Final Report.
Pictorial Formats Literature Review. AFWAL-TR-81-3156,
Volume Ill. Wrght Patterson-A0Ohio: AFWAL, March 1982.

49. Reed, "Device-Independent Graphics Software". Tutorial
Notes. SIGGRAPH '82 Conference, Boston, Mass., July 27,
1982.

50. Riesenfeld, Richard F. "Current Trends in Computer
Graphics", Computers and Graphics, Vol 3 (Issue 4): 115-122
(1978).

51. Robson, David. "Object-Oriented Software Systems", Byte, Vol
6:(8):74-86 (August 1981).

126

-,',* * 5... 5 . ~ **~~

52. Ropelewski, Robert R. "F-15 Fighter Abilities Evaluated",
Aviation Week and Space Technology, Vol 116 (Issue 17): 39-46
(Apri I Z6,-T 87T

53. Rothe Development. PLAID System Description. 1-8. 1979.

54. Royal Aircraft Establishment. Civil Avionics Research.
System description. Dd8294894 FF-T TM7T1 Department on
Industry and the Central Office of Information, Her Majesty's
Stationary Office by Alpine Press, England, 1981.

55. Schaefer, L. J. "Design of Software and Formats for
Interactive Graphics Support", Advanced Computer Graphics:
Economics, Techniques and Applications, edtd by R. D.
Parslow and R. ETiot- -een 803-829. New York: Plenum
Press 1971.

56. Sexton, George. Series of phone calls defining cockpit
displays for transport aircraft. 1982-84.

57. Sexton, George, Richard Moss and Gregory Barbato. Final
Report from the TAWS Simulation. Vol I-Ill. 1976a, 1976b,
1976c.

58. Sheridan, Susan. "Business Wakes Up to Color Graphics",
Optical Spectra: 44-46 (July 1981).

59. Smith, Wayne D. "Beyond the 757-767", The Human-Machine
Interface in Airborne Systems. 27-33. -TEE,/AES5 Symposium,
Dayton, Ohl-h, December1980.-

60. Smiths Industries, product description, 27-33. 1980.

61. Softech. Technical Memo Describing SADT. 9022-78. 4:1-23.
1979.

62. Sutherland, Ivan E. "Sketchpad: A Man Machine Graphical
Communication System", (orig. Published 1963), Tutorial and
Selected Readings in Interactive Computer Graphic, edit teTTy
Herbert Freeman. TEE Computer Society's spring COMPCON 80,
25-28. February 1980.

63. Tharp, Alan L. "The Impact of Forth Generation Programming
Languages", SIGCSE Bulletin, Vol 16 (No. 2): 37-47 (June
1984).

64. Thomas, R. C. "The Design of an Adaptable Terminal" in
Computing Skills and the User Interface, edited by M. J.
Coombs and J. L.-'-7 y-. "1Tew York: Academic Press, 1981.

65. Tucker, Ted W. "How to Organize Process Information for CRT
Display", Instrumentation Technology, Vol 28 (Issue 11):
59-62 (November 191I).

127

66. Tufts. Seminar notes on Fourth Generation Languages. 1984.

67. Wall, R. L., J. L. Tate and M. J. Moss. "Advanced
Flight Deck/Crew System Simulator Functional Requirements".
NASA Contractor Report 159331, Contract NASI-15546, December
1980.

68. Warner, James R. and Nicholaus J. Kiefhaber. "Implementing
Standard Device-Independent Graphics", Mini-Micro Systems, XV
(7): 201-208 (July 1982).

69. Washburn, John and Robert Tibor. "Advanced Cockpit
Technology", Technical briefing to government and contractors
concerning new cockpit systems. Rockwell International,
Collins Divisions, Cedar Rapids, Iowa, June 26, 1979.

70. Weinberg, Victor. Structured Analysis. New York: Yourdan
Press, 1979.

71. Whitaker, Richard. "Ferranti Mission Manager's", Flight
International: 505-510 (August 15, 1981).

72. Wilson, J. W. and L. F. Bateman. "Human Factors and the
Advanced Flight Deck", paper presented at the 32nd
International Air Safety Seminar. London, England. October
1979.

73. Wilson, J. W. and R. E. Hillman. "The Advanced Flight
Deck", paper presented at the Royal Aeronautical Society
Spring Convention. London, England. 16 & 17 May 1979.

74. Vokits, Ronald S. and Harry L. Waruszewski. "Air Force
Needs", The Human-Machine Interface in Airborne Systems.
4-8. Dayt-n, Ohio: IEEEIAESS synposT m, December .

128

Appendix A. Simulation Topics

Simulation efforts use both heads-up and/or heads-down

displays (HUDs or HDDs) in the cockpit. Heads-up formats

make heavy use of symbology to encode data for the pilot.

The symbols used can be very simple, such as a moving line

representing the horizon line reference of the aircraft.

They can be extremely complex, such as the pathway in the sky

symbol (PITS) which symbolically shows the pilot how to fly a

safe profile during the course of an agressive terrain

following/terrain avoidance (TF/TA) mission.

This particular type of complex symbol contains many

individual pieces of data regarding aircraft attitude,

waypoint information, turns, climbs, descents, etc. The HUD

in Figure 24 is currently being tested for TF/TA types of

maneuvers and illustrates typical HUD symbology.

A certain frame of reference for the consideration of

these technical points is necessary to understand how they

impact the DESIGNS system. Of paramount importance is the

fact that this effort is concerned with research and

development (R&D) simulation and its relationship and

potential impact on the flying sector of the military. The

issues developed here are couched within this framework.

129

FICUPE 24 - TF/T/\ HUD Synbology

r

*

t

- p .,r

ft .~

)

\ ,4 7' 4
.4, f

9

130

They reflect the military needs, which in many aspects

differ significantly from civilian sector needs. The R&D

concerns are of primary importance as opposed to those

development needs of the training simulation sector. Again

these needs vary from R&D to training installations. All of

the following discussions use this frame of reference as the

point of departure.

HUD Symbology

HUD symbology is essentially skeletal in nature. It

portrays the situation using the bare essentials by providing

its data in a symbolic format. HUD symbology willingly

trades realism to provide maximum pilot cuing with a stylized

symbol set [Boeing, 1983; Lockheed, 1984; Jauer and Quinn,

1982 : 4-13). Being able to maintain visual contact with the

world outside the cockpit, while looking through the HUD

symbology, dictates that the display be relatively

uncluttered. This leads to the use of symbols to represent

important pilot cues. Any alphanumerics used are for digita!

readouts associated with some symbol. Thus the typical HUD

does not use a lot of alphanumeric displays, since the

individual pieces of data are encoded within symbolic

formatting.

The heads-up display has other common attributes which

define it. Because a HUD has been traditionally used in

fighter applications or in highly dynamic situations, the

131

i" .. ° ~~~~~ ~ ~ ~ ~~........ .. -.... . ..-...-..- '...'\ .,-...-....- :

symbology is subject to extensive dynamic transformations at

high speeds. This inherent speed requirement has

traditionally been met by using calligraphic devices for HUD

symbol generation. A second feature is that HUD formats are

usually displayed in monochrome only. This is a by-product

of using calligraphic systems, since they are primarily

monochromatic devices.

It is also important with a HUD to maintain visual

contact and proper orientation with the real world.

Simultaneously, the pilot must assimilate the HUD data being

superimposed over the forward field of view. Therefore, HUD

dislays have used the line drawing type of systems which do

not block the pilot's forward vision. Symbology composed of

lines does not occlude the outside world picture. Raster

SIP techniques, while they can provide a more detailed, solid

display, can block the view with solid, colored figures and

are difficult to registrate with the real world scene. Thus

stroke systems have been heavily used for HUDs to the virtual

exclusion of the detailed symbology available from raster

systems.

HDD Symbology

Contact symbology, which provides an artificial

recreation of the out-the-cockpit world, is common across the

broad range of heads-down display formats. It provides

appropriate cues to enable the crew to satisfactorily fly in

132

. '4%° . * . ,• o .o .o ,.. o . ° . . . i o . .o , ,° o

visual contact flight. These displays are an abstraction of

the real world, as with HUD symbology, and can be highly

stylized. The true contact display has come to be termed a

pictorial display, as it provides a picture of the situation

of interest.

The complexity of some representative heads-down

aircraft displays varies from purely alphanumeric to complex

pictorial displays. The purely alphanumeric display is the

most elementary format with which to deal. Alpha characters

and/or numeric data are defined for specified locations on

the display. The resulting dynamic operations are limited to

updating the contents of the written data. No dynamic

transformations such as rotation, translation, or scaling are

generally performed. Figure 18, in the requirements chapter,

* illustrates a typical heads-down configuration for the

AFTI-F16 cockpit.

On the other extreme of complexity are the pictorial

displays, or image generation. Pictorial formats present

data to the crew members in the form of a descriptive

picture. The more complex the pictures become, the more

computing power and algorithm complexity is required. The

furthest extreme of a pictorial format for simulation could

present the entire view of the outside world to the pilot.

This kind of display would require a large, expensive

Computer Image Generation (CIG) system dedicated to

performing that function. The extreme detail of an advanced

CIG system is shown in Figure 25.

133

mS

- GIG Sy~bo1ogy...

- .~

4.-

ii'
AdIP
j
1'
*

44 ~

3I

[
1 ?A

~

While CIG considerations are beyond the scope of this

thesis, the pictorial display, in its less complex form, is a

likely candidate for DESIGNS support. The intent of the

highly stylized pictorials is to produce a 'picture' of the

situation of interest. This approach in displays provides a

highly integrated description of the data. With well

designed formats, the time spent in interpreting and reacting

to a given situation can be significantly reduced. This type

of format represents the most complex and experimental of the

display techniques being investigated for in-cockpit use.

This type of pictorial is well illustrated in the series of

formats included earlier in Figures 9 through 17.

Somewhere between the all-alphanumeric format and the

pictorial design are those requiring some combination of

character and symbolic data. These displays typically have

provided the mechanism to replace the electromechanical

instruments in the cockpit. They are often used to display

attitude and situation data. Generating and updating such a

display involves the same issues as those for a HUD with

symbolic and alpha characters in the format. The Electronic

Horizontal Situation Indicator/Electronic Attitude Direction

Indicator (EHSI/EADI) combination shown earlier in Figure 3

are typical electronic replacements for older cockpit

instruments. They combine alpha data with a picture format,

and are actually an electronic copy of the electro-mechanical

device they replaced.

135

.- ..* , - % **.. .,. -* *..... - . ~ . U-.. .

- .- , *ammm*m*m t- 0* * A.. . A * . .

Color raster systems are being used more and more for

heads- down display generation. Color provides a mechanism

to encode data for crew use and to emphasize cautionary or

critical conditions. Combined with the color, the raster

display provides a powerful tool for the pictorial types of

format. The complex symbology can be more easily

accomplished using raster techniques. The resulting

symbology is more readily recognizable than an equivalent

'open' (stick figure) calligraphic symbology. This reduces

the ambiguities and uncertainties within the display. Since

the raster representation can closely resemble the actual

appearance, these displays are easy to learn and use. The

capabilities afforded by color and raster appear at this time

to have the best payback in the heads- down display area.

%.. Thus, entirely new possibilities are now available for

cockpit integration.

Each of the display types described thus far can be used

as a part of a simulation project. The heads-up displays,

the all alphanumeric, and the symbolic heads-down displays

are commonly used. Pictorial formats are in a developmental

phase. Their use is increasing in research areas

particularly. Research will determine what formats are

acceptable for cockpit use. Some contrived pictorials may be

of questionable value. More likely a combination of display

types and formats will prove to be optimum. Pilot preference

and mission requirements will shape the combination of

. displays that will be acceptable. Simulated scenarios are

136

*.-- -- *.. *. - **. *. *. *. p*. . * .

being flown using the simple pictorials to determine the

feasibility and utility of such formats. For any given

effort, the specific project needs dictate the types of

display formats to be used. These needs are then constrained

or redirected by the capabilities of the facility performing

the tests (Boeing, 1983; Jauer and Quinn , 1982; Sexton and

others, 1976b; Moss and Barbato, 1980).

137

42.

Appendix B. Human Factors Topics

Human factors, as related to computer engineering, has

been defined as how we humans interact with computer

equipment. There are associated areas concerning how we see

things, perceptual psychology, and how we learn things,

cognitive psychology. The growing body of knowledge in these

areas provides a wealth of information that should heavily

impact the designs of interfaces between computer systems and

the 'world' they service. Traditionally, however, human

factors techniques have not been a concern in the formal

study of computer systems. [Foley and Van Dam, 1982 :

218-219)

Emphasis within the computer related disciplines has

* .previously been placed on physical computer devices and the

software techniques to support them. As computer systems

provide more complex services and become available to more

groups and individuals, many of whom are not trained in the

rigors of computer science, the need for acceptable user

interfaces becomes critical. Technical people involved in

computer system development are beginning to focus on this

problem, both to define it and to provide solutions to it.

The Interface of concern in the context of this

discussion is one which supports interaction between the

computer system hardware and the computer user. Interactive

environments should provide support to the system user and

make computer usage more simple. Well-defined, powerful

138

- . . .

environments should greatly enhance the user's abilities to

exploit the machine's facilities.

In discussing the criteria for interactive environments,

one important issue has traditionally been the question of

system response provided within some tolerable time span.

The subjective definition of a good interactive support

environment requires that the facilities needed by the user

must be implemented and that the environment must not incur

delays which exceed the user's patience level. Inadequacies

in these two areas break down the dialogue between the user

and the system which the interactive system should encourage

and exploit Schaefer, 1971 : 804).

Few people will deny the importance and potential power

of a 'good, user-friendly' human/machine interface for a

computer based system. The problem with designing and

evaluating such interfaces is that there is no definitive

measure of 'good' or 'user-friendly'! What is fine for one

group or individual may be woefully inadequate or

inappropriate for another (Auld and others, 1981 : 78-92;

Eason and Damodaran, 1981 : 115-122; Damadaran and Eason,

1981 : 373-387). These differences among users can be caused

for any number of reasons and create a difficult situation

for the designer of an interface to a computer system. Human

factors techniques often appear to be an art form rather than

fully defined theory.

139

S.%IV - .

Is this to imply that individual interfaces must always

be custom built, tailored to each user's personal tastes? Or

that there is no foundation of knowledge on which to start

adequate interface designs?

Guidelines for User Interface Design

Fortunately this is not the implication. There exists a

solid set of principles and guidelines which can assist the

interface designer. Research has provided insight into

useful strategies for effective interface definitions.

Desired qualities for the dialogue between the user and the

computer have been enumerated. Methodologies for profiling

the intended user and adequately defining user needs have

been proposed. Potential problem areas in the interface

development exercise have been identified. System developers

can use these guidelines to direct activities in the

user/machine interface area.

The quality of the interface plays a major role in the

eventual acceptability of any interactive environment. An

important measure of this quality is the user's perception of

the adequacy of the system interactions. The critical issue

is efficiency - and NOT the machine's efficiency, but the

user's. An accaptable interactive system must improve the

effectiveness of its users and support their activities. It

must be a useful tool for accomplishing the user's tasks.

Four areas have been identified as critical to the interface

140

..................................... S

• -. , ... -%.- *- , , - - ", .". ". ." -"* ,,',, ,.i, " . . , -. .., , .", , .,. ". ,- . ., .' ,(

design. They address areas of system

(1) reliability,

(2) adaptability,

(3) self-sufficiency, and

(4) ease of use.

System reliability refers to the system degradation when

dealing with invalid user inputs. Carefully designed

software interfaces will tolerate improper input formats and

provide informative feedback to aid the struggling user.

Adaptable systems provide multiple layers of support to

present acceptable interfaces for a variety of user skill

levels. For example, as a user becomes more proficient in

the system use, the level of detail in the interactive

messages would decrease. This feature provides an abundance

* f.h of information to the novice, but doesn't inundate the

skilled user with trivia. Self-sufficient systems stand

alone in the sense that on-line help is available for users.

At any point during the user/machine dialogue, the user may

request and receive explanatory information regarding how the

system works, what data is expected, or other beneficial

items. [James, 1982 : 340, 343-346; Eason and Damodaran,

1981 : 115-118, 120-122]

The ease of use criterion is more difficult to quantify.

As discussed earlier, user perception and acceptance of a

• -system varies widely based on the user's background and

capabilities. Regardless of the skill levels of the intended

user audience, as interactive system should provide the

141

a,

following capabilities to improve its ease of use

(1) Small amounts of data, with one major idea per
display, should be shown on the screen. There is
no justifiable reason for filling a display screen
just because it's there.

(2) The displayed formats should be clearly and cleanly
designed, with instructions readily discernible.

(3) The design should avoid using difficult words or
characters and should provide similarity among the
various displays and/or operations.

(4) Required user responses should be kept short and
consistant. On-line help should be available and
readily accessible.

(5) A mechanism permitting the user to easily backtrack
and 'undo' previous operations should exist.

(6) System functions must be clear to the users as well
as designers, and must be readily invoked.

(7) Finally, the computer should ALWAYS respond to the
user. If a time-consuming function is to be
performed, some form of feedback indicating that
normal progress is being made is comforting.
[Foley and VanDam, 1982 : 218, 222-2393

User or Designer Goals - An Avoidable Conflict

Adherence to the above guidelines does not necessarily

guarantee the resulting system design will be acceptable.

The inherent difficulty lies in the great disparity that

often exists between the system designers and the system

users. The problems and interests of the system programmer

have often been confused with those of the eventual end-user.

Developers many times consider themselves as typical users,

thus making their own system design objectives the focus of

attention. The requirements of the final application use

142

* * * * * * * * ** * * . *

have been relegated to an inferior position, or ignored,

which potentially compromises the design. This approach will

surely design a system that is a programmer's delight, but

likely a user's nightmare. This failure to recognize that

program designers are, in general, NOT typical users, results

in software packages that may have been very clean to design

and implement. They may exploit the physical machine's

capability to the limit. But they likely provide a weak,

awkward interface for the ultimate user. (Foley and Van Dam,

1982 : 217-8; Grimes and Ramsey, 1982 : 2-3 to 2-4, 3-4 to

3-7; James, 1982 : 345-46)

Therefore, it is important that the system designer

consider seriously the end-user needs and capabilities. The

-* design focus shifts radically when it is truly based on the

end user requirements. Much more time is devoted to

tailoring the system for the end user. User tailoring places

the focus in the proper perspective - with the attention

directed toward the abilities and needs of the user.

By and large the profile of users of computer based

facilities can be characterized as [Martin, 1973: 19-23):

(1) intelligent,

(2) too busy for in-depth training,

(3) highly impatient,

(4) non-rugged, and

(5) demanding of worth while results.

143

""""-* . -% V '.% -*... , ,. .."""--' ..." . . . " . *. , .. . **.

'p

In considering ourselves as users, most items above can

• Ybe readily accepted as reasonable attributes for a computer

user. We certainly like to consider ourselves as

intelligent. As such, we do demand results which are timely

and worthy of our consideration. For the most part we do not

intend to devote vast amounts of tim - to learn any given

system in detail, just well enough to get our job done.

Combinations of these traits cause the user to be

described as non-rugged. Non-rugged in the sense that as a

reasoning being, a user has certain expectations of a system.

Such a user will not willingly tolerate system behavior

significantly inferior to those expectations. System

response time, how quickly can it accomplish a task, is a

* critical point of user evaluation. A sluggish system is

intolerable to most users. Ironically, the same user is

equally unaccepting of a system whose response time is too

rapid. This can intimidate particularly the casual user who

may feel pushed to respond much faster than seems

comfortable. People need to break work into sections to

attain a feeling of closure on one activity before proceeding

to another. System response which is so fast as to preclude

such breaks is stressful and ultimately unacceptable. An

elusive balance must be established between the user

expectancy of a smooth response time and the user's need to

perform work in segments with some break between them. Time

estimates for how quickly a system should respond and how

long breaks should be vary considerably with different users

144

77 7P -N

and applications [Grimes and Ramsey, 1982 : 3-2 to 3-7;

Martin, 1973 : 10-13, 19-23J .

The discussion above presents several assertions that

are accepted as common knowledge regarding the effects of

response time on human performance. Interestingly, there is

very little empirical data to either support or refute these

theories quantitatively. One recent study refutes the theory

that inappropriate response time impairs performance [Butler,

1983 : 58-62]. Butler finds poor statistical correlation

between response time and performance in a variety of tasks.

However, Butler's experiments do not consider the user's

acceptance of the system's performance. He merely quantifies

the number of typing errors made during a session and

determines that the error rate is not statistically effected

as the response of the system degrades.

Other studies (Foley and Van Dam, 1982 : 217-218,

239-242; Grimes and Ramsey, 1982 : 3-4 to 3-6, B-5j C-4],

which Include subjective comments, conclude that the user

acceptance is affected by the response time of the system

under question. Ultimately, the user's perception of the

system is a critical factor in satisfactorily performing

tasks over a long period of time. Therefore, the issue of

response time constraints will be carefully considered in

order to assure user satisfaction.

User/Machine Dialogue Characteristics

145

Traditionally, two distinct techniques have been used to

establish a dialogue between the user and a computer system.

Systems can be classified according to the mechanization of

the dialogue as either menu driven or command language based.

The choice of dialogue type must be made with a clear

understanding of both the system requirements and the

technical merits of the menu and command language

implementations.

Before discussing the technical points of either

dialogue type, it is necessary to define what is implied by

each alternative. A menu driven system is one in which all

valid selection options are displayed to the user in some

form of menu. Only those options currently displayed by the

menu may be activated from that particular menu. Selections

can lead to other menus or to the performance of an activity.

Thus to access other options, other menus must be selected

first. Selections from the menu are made by pointing, in

some fashion, to a menu item or by typing a short command

indicated by the menu. In either case the method for

selection is available on the display screen.

A command language system presents no such visual aids

to the user. The system options are selected by typing the

command for the desired action in the syntax required by the

operating system. All of the valid options in the entire

system are available at all times for activation. The user

is required to know the required syntax for actual

invocation.

146

- . .. 7 .-. W

These definitions are necessarily restrictive in nature

as they make no attempt to address dialogue types that

embrace concepts from each of these techniques. Nor do they

address some of the differing techniques that have been

attempted to provide different dialogue forms. These two

techniques are both popular and successful, and will be used

as the basis for the following discussion. This does not

preclude the consideration of other related techniques if

indeed they can be better suited to the DESIGNS effort.

In addition to the command and menu driven techniques,

there are numerous other dialogue implementations. Many of

these are the result of combining the styles from command

language systems with those of menu-driven systems. Each has

its own distinct set of shortcomings to accompany its

strengths.

This section contains information for other techniques

with which a human/machine dialogue can be implemented

[Grimes and Ramsey, 1982 : 7-2 to 7-4; Martin, 1973 : 12-13J.

This shoulf provide the reader with a more complete picture

of the dialogue types available. Keep in mind that each of

these to a certain extent is merely a permutation or

extension of the command or menu-driven techniques.

Dialogues can be classified in terms of the type of

conversation that is being handled. There are two types -

that which the operator/user initiates and that which the

computer initiates. Those conversations which the user

initiates may seem to be more under the user's control, but

147

L.
° , ' . ' - , ' , ' . . -, ' ' ,

, " ,-.-,-,,.-,•, .. . - ,. -. -. -.

also require the user to be more knowledgable. Computer

initiated conversations can be intimidating and confusing if

the informational content is too high, or if presented to

quickly.

The following techniques are typical user initiated

conversations. The list is ordered from simple to complex.

In each case the user types in a command as in a traditional

command language system. As the complexity increases, the

form of the command is more involved, and multiple actions

can be simultaneously initiated. In the most complex

commands, a series of actions are commanded from the

keyboard. The user initiated conversations include:

(1) simple query, which is a single, simple command,

ko (2) mnemonic techniques, which provide a shorthand,
encoded form of a command convenient for frequent
users, but cryptic in actual form,

(3) English language techniques, which provide a more
natural mode of communication,

(4) programming statements, which resemble computer
language statements and may initiate complex
activities with a single command,

(5) action code statements, encoding desired system
actions into recognizable commands,

(6) and multiple action code systems, which initiate
multiple activities with a single command.

The computer initiated conversations can assist the

user. Many of these techniques are based loosely on the

menu-driven system characteristics discussed in the body of

this paper. The more complex implementations can present a

,.- high workload situation to the unfamiliar user. The

148

" "---.- "-.".-.-...-....... .-.-.---. i--,-,,'--:--",,."..".".".-.

.!"J 'J _I* IJ'1'- -. V . ** -- - --

following list presents some of the more common approaches to

computer initiated conversations. As with the first list,

these are listed in order from most simple to most complex.

Examples of computer initiated dialogues include:

(1) instructions to the operator/user, which request
user input, describe legal actions, and require
some user response,

(2) menu selections, which may include simple menus or
multiscreen, nested menus, or menus requiring
multiple answers,

(3) encoding information in formats, which presents
more of a picture to the user,

(4) variable length and multiple format entries, which
permit the user to select default options on
parameters when acceptable,

(5) form-filling,

(6) text editing techniques,

(7) overwriting, which permits the system to overwrite
information within a selection and can be extremely
confusing,

(8) and, as a kind of catch-all, hybrid dialogues,
which provides the designer which great latitude in
the dialogue development to pick and choose those
techniques which may be most beneficial. The only
problem with this approach is that consistency can
often be lost.

When considering the computer initiated conversations,

one must also consider the way in which information can be

encoded for presentation to the user. One way to assist the

user, to offset the more limited bandwidth capacity of the

user as compared to the computer system, is to use displays

of some type. The use of displays also aids the cognitive

process and supports the user's short term memory limitations

by not requiring memorization of lengthy commands.

149

The following table illustrates the value of various

drawing techniques. Of particular importance is the very

positive effect of using recognizable, geometric shapes.

This technique plays an important role in the DESIGNS menu

system. It was selected because of the benefit to the user.

Selection of the Dialogue Type

The differences between menu and command dialogues tend

to make each of them appropriate for distinctly different

audiences. Menu driven dialogues, with the ever-present

selection aids on the screen, tend to be well suited for

casual and infrequent users. Since there is no requirement

to memorize long command sequences, such a user can work

through the entire system using the menus fairly easily.

There is an accompanying penalty with this system in that the

menus take a longer period of processor time to draw on the

* screen, but casual users seem not to adversely suffer from

the somewhat decreased response time. The additional help

available more than offsets the writing time required for the

menus.

The highly trained user finds the menus to be a

hindrance. The design philosophy being one of providing help

whether the user wants it or not, precludes instant selection

of all system options. Typically the expert user does not

want, or need, all this help. This type of user much prefers

" "the flexibility and speed of the command language system to

150

- . -. . • - .4.",..-. .. .**% . 4 ,-,. -, .,4.*4°4 . ., , . , "*, ° , .. o."o '4 .*. ,

TABLE VI
Effects of Display Encoding Techniques

RECOMMENDED MAX RECOMMENDED MAX
ENCODING NUMBER OF FOR RAPID/ERROR

HETHOD ITEMS FREE REACTION COMMENTS

Numerals, Unlimited Unlimited Highly versatile, little
and letters aid to memory. Location

tine can be long.

Geometric approx. 15 approx. 10 Very effective, high
shapes mnemonic value. Supports

the cognitive process.

Angle of Line 16 8 Good in some cases

Line Length 4 3 Fair, clutters displays

Line 11idth 3 2 Good

Solid Lines 9 5 Good

Object Size 5 3 Fair, requires space and
longer location time
than for shape or color

Brightness 4 2 Poor, especially if the
screen contrast is poor

Flashing 4 2 Poor, confusing. But can
• Symbol attract attention easily.

Color 11 6 Expensive, valuable. No
extra space required.
Location time short. Can
relieve clutter.

151

A. t-~ ~ ~ %~. ~~A\%AA
JP~~4~* %

the abundance of Information available with menus. The user

expert in a system knows the command structure well enough to

select desired options and often knows shortcuts to

accomplish tasks. Menus only serve to bog down the efforts

of such a user by strictly structuring how all tasks are

accomplished.

There are other differences that impact the user beyond

the differing physical apperances and the selection methods

of the two dialogues. The selection mechanism used in the

command language implementation is somewhat impervious to

undetectable user errors. If the command syntax is

incorrect, the system will simply reject it. Improper

actions are, in general, immediately apparent. In a menu

driven system, errors can be committed in more subtle ways.

Since all the displayed options are valid for the system, an

invalid selection cannot be made. However, while a selection

is perhaps valid, it is not necessarily the correct one for

the users intentions. Particularly if the selection leads to

deeper levels of menus which are common to, or similar to,

ones for several options, the user can quickly and easily

become buried doing an unintended activity. As menus levels

are traversed it becomes more difficult to undo the steps

that have been accomplished.

Serious errors of commission can occur in either system

by careless operation. The severity of the errors in a menu

* *driven system can be greatly reduced by competent dialogue

. design. But these are some of the major points concerning

152

lr w, I C 61 N 7 W 7 '- -

the dialogues. Table VI contrasts the more of the positive

and negative aspects of the two dialogue designs. (Foley and

Van Dam, 1982 : 218-219; Norman : 1983 : 2-6, 9]

TABLE VII

Menu Driven vs Command Language Based Dialogues

ATTRIBUTE MENU DRIVEN COMMAND LANGUAGE

Speed of use Slow, especially when Fast, for experts;
menus are large or Operation specified
there is a hierarchy exactly, regardless
of menus of system state

Prior knowledge Self-explanatory; Significant knowledge
i " required minimal previous about actions and

information is command syntax is
necessary necessary

Ease of Quite straightforward; Difficult; User must
learning Requires recognition memorize syntax of

memory which is much language which if
easier than recall; extensive requires

Easy to explore system much time; No easy
and locate available way to find an
options option not known

Errors Specification errors Specification error
lead to inappropriate usually leads to
actions that are both illegal commands;
difficult to detect These are easy to
and correct detect/correct (if

syntax is known)

Target User Beginner or infrequent Expert or frequent

From the discussion and the comparison data presented in

5 153

I.-, .-*.- * .* . *..' -. -, . .,~ ..-. ,. . .'.-'.'.',,....., .' , .- ~.., ,...'..' . ',... ;. . . ,

" '' "t" ' '"* ' ' " ''" " / " ',' ","*"*.*.*. *.'* '' * ..''' ." 4' * ' .4,' ' ,.'''..,.. .'." . .''_
"

Table VII, it can be seen that each dialogue technique has

its positive as well as its negative aspects. Consequently,

there is no universally best system for an actual

implementation. There are only tradeoff issues to be

evaluated in light of the system requirements.

154

* - 1b" ~ .- * . - -

* @ . ~ ~ - . * -*'~.***.S*'~~* * .

Appendix C. Hardware/Software Integration Topics

The DESIGNS concept is heavily dependent on a thorough

understanding of both softv;are principles and graphics

hardware capabilities. The defined environment is somewhat

hardware intensive since the key element involves the

targeting of software to multiple graphics devices. In order

to manage effectively this targeting of software to a family

of dissimilar graphics systems, it is important to understand

the kind of capabilities and support that can typically be

found in the graphics systems.

With the understanding of the hardware functions and the

software techniques available to model the system

definitions, an integrated environment can be designed.

Thus, the nature of the DESIGNS concept requires an

integrated look at the hardware and software issues because

of their close inter-dependency.

". There are certainly topics within the hardware and

software areas that can be discussed as separate issues.

Several of these individual issues have been identified as

critical and their importance to the DESIGNS definition or

implementation recognized. These issues form the basis for

the DESIGNS concept and involve many areas from both software

development and hardware interfacing. In addition, there are

those topics that bridge the traditional gap between pure

hardware and software Issues. These areas are primarily of

concern with the issues of interfacing the DESIGNS functions

155

to the various target devices. It is this topic, whose

successful completion is critical to the success of the

DESIGNS concept, that must be considered from the system

integration point of view.

The software required to support the DESIGNS concepts is

heavily involved with database definition and implementation,

abstract data type definitions, dialogue support, and

algorithm development. Hardware specific considerations

impact the definition of critical system interfaces and

seriously affect the software which must support these

interfaces.

Overview of Critical Hardware Issues

The choice, availability, and capability of the hardware

devices used have far-reaching consequences on the overall

DESIGNS effort. While it is desirable to maintain

portability in the DESIGNS package to facilitate rehosting if

necessary or desired, it must be recognized that at some

level the idiosyncrasies of the host hardware as well as the

target system hardware must be addressed. It is important to

identify areas in which these hardware issues impact the

DESIGNS package, so that hardware specific software can be

isolated from the remainder of the package and provide a

better mechanism for device independence.

The following sections discuss the features that are

potentially available within the DESIGNS hardware systems.

156

Typical capabilities of today's workstation equipment and

graphics devices are described. Tradeoff issues, along with

supporting data from previous research, are discussed.

Typical Workstation Capabilities

A user workstation can provide support input/output

(I/O) functions ranging from simple, austere capabilities to

very elaborate support facilities. While discussing

workstation issues, areas that must be considered are system

input/output functions, display screen capabilities, special

features to support graphics, and general issues such as

error handling, system security, reliability, portability,

maintainability, and flexibility. [ACM SIGGRAPH, 1984 :

38-39; ACM SIGGRAPH, 1979 : V-2 to V-7; Foley and Van Dam,

1982 : 18-27, 95-135, 183-197; Martin, 1973 : 19-23; Newman

and Sproull, 1979 : 3-8].

Most of the workstation issues are important by virtue

of the impact they have on the user interface. The

workstation is the only physical interface that a user has

with the DESIGNS environment. User critical areas have been

discussed at some length under the human factors topic.

There are many input devices that are fairly standard

equipment for a broad range of modern graphics systems. More

systems are being designed for the explicit purpose of being

stand-alone workstations. These stand-alone systems usually

support multiple input and output devices that are useful for

157

*% .%**l'* * - * -- .**%**~ - -

a variety of graphics related tasks. The majority of the

systems can support such devices as joysticks, mouse devices,

data tablet, light pen, control knobs, valuators, and a

variety of other technologies. There are more sophisticated

devices also available. These are not really necessary to

accomplish the functions required for DESIGNS.

The DESIGNS capabilities discussed in earlier chapters

can be accomplished with relatively simple devices. For

example, the designation of symbols can be accomplished by

such things as light pens, or any device which can move a

cursor (such as trackball, mouse, joystick) and activate a

selection (event button). The drawing of new symbology

likewise can be supported by a device such as a digitizing

table.

There are detailed display screen issues to be

considered. A determination of the amount of symbology that

must be displayed at any one time during a DESIGNS session is

necessary so that the physical display capacity can be

specified. For raster type displays this implies a

definition of the raster size, or resolution, necessary. For

stroke, or calligraphics systems, the number of vectors

supported is necessary. Drawing speed, update rate, and

refresh rate can be critical parameters for various

applications. A very basic issue to address involves the use

of a raster versus a stroke generated display. There are

significant tradeoffs between the two as discussed earlier in

this paper under the cockpit designs topic. The choice of

158

• ..• .- , * o ... *. . *. or -*... . - , w . ° °. .
' ' -- ---N ' ... ' ' '" .' -' '''

the workstation display reflects these considerations and

effects the use of the display screen.

In addition to the I/O issues, Martin and Van Dam

caution that there are other issues, less likely to be

considered, that may have a serious impact on the choice of

system hardware and on later implementation. One must

consider early in the design phase the necessity for the

workstation to support special graphic functions. The major

issues here concern the need for special capabilities such as

surface filling and shading, special high-speed options for

transformations, any advanced algorithms, color options, and

many other of the available graphics options. Associated

with selecting these capabilities or not, is the concern as

to whether or not some of them can be supported by software

algorithms, or if they require dedicated hardware to provide

faster speeds.

In another area, system security concerns may have long

term impacts especially in a military environment such as is

postulated for the DESIGNS system. Certainly some level of

security must exist in order to maintain the integrity of the

DESIGNS database th t supports the project. Likewise, there

are long term ramifications in the areas of reliability,

maintainability, and flexibility. Ease of servicing and

upgrading the workstation may be Important considerations of

the unit is to be used as a too] for an extended period of

time.

* 15

-" 159

... a.- o.-° -..... '-o-..'* ' .a a . '.. '. ' - . . *..*. ***.. .. . ' ' .-.-

The workstation is a physical plant, and as such has the

same concerns as any other physical installation. Many of

the issues may seem to border on the consideration of

minutiae, but they are valid concerns over the lifetime of

the equipment. It may be important, or mandated, that the

system meet specified noise levels, or size constraints, or

particular compatibility with existing pieces of hardware.

The details of these areas discussed in rather broad

terms can not be ignored. At least one must make the

conscious decision that the impact in some area is mininal

and thus is not an important concern.

Target Device Interfaces

" Even in a fairly restricted operational environment, it

is likely that multiple graphics processors will be available

for use. In all likelihood, these devices will be dissimilar

both in their hardware characteristics and system software

support. The intent with DESIGNS is to provide for target

device independence, at least from the user's perspective.

[ACU, SIGGRAPH, 1984 : 201-207; Reed, 1982 : 281-289].

The necessary knowledge for delineating such a generic

definition lies in two areas. First, an understanding of

what hardware options are available, and thus must be made

accountable/accessable through the definition, is necessary.

Second, an appreciation for the software data abstraction

methodologies is paramount to the successful implementation

160

S *'

L + + | . + . ,, . ,, . . - -. . -. . . .-

of the standardized definition.

The importance of device independence and graphics

standards is widely recognized within the graphics community.

Substantial effort has been taken to define the functional

capabilities supporting device independence [ACM SIGGRAPH,

1979; ACM SIGGRAPH 1984]. Such standardization supports

quicker, easier, less costly graphics development, while also

providing for portability of both software packages and

personnel.

Both the CORE Standard and the Graphical Kernel System

(GKS) define requirements for predefined capabilities within

the basic software package. There is also some attempt to

define the requirements for a virtual device interface (VOI)

which provides for standardization of hardware. This is the

weakest point in both CORE and GKS specification, with only a

very generalized statement regarding the VDI. fleverthless,

the initial steps have been taken in an effort to define and

promote graphics standards. These standards have been

embraced by the American National Standards Institute (ANSI)

and the graphics industry. Continued development of

standards, with full implementations of them, is being

actively pursued by both groups [Lieberman, 1983: 49-51].

These efforts provide a precedent for the DESIGIS

effort. Concepts from the standards provide a basis for the

definition of the environment capabilities and

characteristics.

.C

Selection of Host Computers

The selection of a host computer can have far-reaching

consequences on the overall DESIG-IS effort, but possibly none

are as critical as the effect the host could have on the

actual development effort. The intent for the DESIGNS

environment is that it could be used in several host machines

if so desired. The system design is not necessarily tied to

any given type of host hardware as long as the features

specified for graphics support and data storage are

available.

Thus the critical impact of the original host machine is

its capability and availability to support the development

effort for the thesis. Strong development support is

necessary for the successful completion of the implementation

phase of DESIGNS. The availability of support tools such as

programming languages, editor support, and file management

resources is imperative. A consideration of the available

tools within the host operating system and supporting

subsystems is important when considering a potential host.

Equally important is the host availability. If

potential host machine resources are already heavily

committed, then the development time for a major effort such

as DESIGNS becomes prolonged. It may be more effective to

select a host with lesser, but adequate, capabilities which

has better availability.

162

---.-...- =mm-m--t- - ' 1

There are no unique features required for the DESIGNS

development effort. The host selection need only consider

the availability of the host, its resources for the

development of the software, and the utility of its support

functions. The important characteristic of the host, since

most computers today offer the kinds of features required, is

that the features be reasonably simple to use.

Overview of Critical Software Issues

Many of the software issues have been alluded to in the

simulation, human factors, and hardware topic discussions.

The actual software implementation must, of course, reflect

the needs and constraints in each of these areas. Ideally,

it is this software package that integrates all of the

desired functions, but in such a manner as to minimize any of

the potential shortcomings. Earlier technical discussions

serve to identify key areas for software development.

The DESIGNS implementation is heavily dependent on

database design and data abstraction techniques for the

storage of symbol definitions, generic display list

constructions, and target machine descriptions. Several

research efforts have proposed data structures which can be

manipulated by graphics tools. Tile work of the Graphics

Standards Planning Committee of AC{ produced the CORE

Standard package late in the 1970's. This was an involved

effort to produce a true standard for graphics, particularly

1G3

.. °' /- .-- * h ----.. .-- '.- S.) . Q .F - J ' . . -- J . - - - .* - . .

graphics software. The GKS proposed standard, which evolved

later, addresses the area of data structures which should

define a graphics environment. Other de facto standards,

such as the North American Presentation Level Protocol Syntax

(NAPLPS), are finding acceptance within the graphics design

community.

Each of these standards provides a basis for definition

of various critical data structures or communication paths

which must be embedded within the DESIGNS environment [ACM

SIGGRAPH 1979; ACl SIGGRAPH 1984; Lieberman, 1983: 49-53;

Gordon, 1983: 61,64]. Unfortunately, there is no clear-cut

standard at the moment in the commercial market, even though

the GKS has been adopted by ANSI as a standard. Graphics

vendors, both hardware and software, are hesitant to commit

one way or the other at this point due to the tremendous cost

of an incorrect choice.

Another area of software development involves the

DESIGNS dialogue. MIuch attention has been devoted to the

definition and description of characteristics of various

dialogue types. The implications of these discussions on the

actual software implementation are many. Numerous studies

have been conducted to provide clearer guidelines for

dialogue implementations to assure that proper software

techniques are employed. Parsing techniques provide the

necessary capabiity to interpret dialogue activity.

154

A tremendous amount of discussion is on-going within the

computer community today regarding the meanings, benefits,

and applications of fourth generation languages. How do

these 'new' language capabilities impact the DESIGNS effort,

if they do at all? Some concepts from the fourth generation

language proponents bear interesting relationships to the

proposed DESIGNS concepts. Thus the issues surrounding

fourth generation languages become, in some sense, part of

the software issues of DESIGNS.

All of these software issues ultimately revolve around

the final design of the algorithms necessary to accomplish

the DESIGNS objectives. The DESIGNS development has been

predicated on the available technology base and theoretical

techniques. To fully understand the detailed definition of

the DESIGNS concept, one necessarily must have the relavant

background information. The following sections expand on the

topic areas enumerated here and set the stage for the actual

system design description in the next chapter.

Graphical Data Structures

The need for data structures to define graphical objects

has been understood from the early works of Sutherland with

the SketchPad dissertation. As experience with graphics and

computers broadened, the refinement of those data structures

, used for graphics began. However, many of the

characteristics of the data structures in common use today

165

are very similar to the first definition implemented by Ivan

Sutherland in the early 1960's.

The Sutherland database dealt not only with the

symbology itself, but also with those constraints necessary

to fully define it. His database mechanism recognized that

in drawing symbology there were constraints that must be

satisfied. These constraints were the basic relationships

that made lines straight, or vertical , or parallel, etc.

There exist both geometric constraints and user imposed

constraints.

The geometric constraints are more easily quantifiable

as they represent some definition for drawing a given symbol.

For example, a square can be drawn in one of several ways -

by specifying the four corners, by specifying one corner with

the length of the side, etc. Each of the definitions for

drawing a square is complete in and of itself, but contains a

differing set of constraints.

Sutherland based the generation of symbols on a

definition copying scheme. Within the SketchPad system

existed definitions of different ways to mechanize a symbol.

From that definition, new symbols were instantiated by

'copying' the definition with the proper points, lengths,

etc. supplied. This technique is still used today, in a

refined form within the Smalltalk environment. This

environment, developed as a research tool for defining

advanced, graphically oriented systems, is an object oriented

system which operates by using definitions which describe how

166

-.-.-.-.' . .. - - . . . -,: ./ .- -.-. •, ,-, , ,-. .. ,,- , -, ,- ,,. ,•. . . , , . .. , .

-7 .

something is to be accomplished.

Sutherland's data structure implemented rings of

information. In this scheme the general information is

separated from the specific by collecting all things of a

given type under a generic heading. Thus the unverse of

symbols can be defined in terms of variables, constraints,

topologies, and holders (which are attributes of multi-symbol

segments) (Sutherland, 1963: 25-28].

Outgrowths of the SketchPad system include two systems

used for engineering related graphics. Each of these also is

=based on the ring data structure. The first, a Three

Dimensional Editing and Drawing package, THREAD, uses what it

terms an Associative Structure Package, ASP. Within the ASP,

individual objects are defined by linking rings of data which

are associated by types. Figure 26 illustrates this data

structure for some generic object [Parslow and Green, 1971:

245-259].

The second system, another Three Dimensional Drawing

system called TDD, is an interactive graphics system. This

system uses a more complex data structure composed of rings

and beads, a bead being a block of data containing both

problem data and pointers to other related parts of the

overall graphics data structure. In TDD all information is

stored in linked tree structures by defining object edges and

vertices. The edge information is related together in a

linked ring. This particular data structure becomes very

large, and is difficult to modify rapidly as the pointers

167

OBJECT

Surface Ring, containing transformations

- - - . . - Display List Ring

line line
AB BC

point pont pont

FIGURE 26
ASP Ring Data Structure Implementation

must be traversed. However, it is excellent for an

interactive environment. With the dynamic data allocation

supported by the addition of pointers, this data structure

lends itself very well to activities encountered in the

interactive systems.

As work has progressed into the 70's and 80's, the data

structuring problem has been recognized as acute in graphics

applications. In order to facilitate more efficient, smaller

data space requirements, relational databases have been

168

studied. Internal tables of data defining graphical

attributes have been used in various picture building

systems. The relations are then interpreted by a relations

editor and symbology is generated.

Accompanying this move to relational database structures

is the deeper understanding that for graphical data to

possess any meaning it must have both syntactic as well as

semantic meaning. The mechanism of how the data is stored

and accessed, its syntax, is only part of the story. How the

data is to be used, its semantics, must also be understood.

Traditionally, the semantic information is not stored

and can not be operated on. Thus programs and data were

inseparable as the semantics are buried within the program

calls. Newer graphical data base methodologies are

advocating the inclusion of graphical semantics. Table VII

below is an excerpt showing the type of semantics defined for

an early system using this approach.

Graphics Standards

Serious efforts in the late 1970's and 1980's have been

undertaken to standardize graphics software. The CORE

Standard evolved as practicing graphics developer's

recognized the need for a defined, standardized methodology.

The singular driver for the development of the standard was

the Issue of portability, both of software and the people who

S- develop and use it. The CORE definitions focus on specifying

169

",- -,- . . -... =, -'-'.".-. ,..-.-......

TABLE VIII

Semantics Permitted in Early Picture Building Systems

OPERATION SEMANTIC MEANING

.,x, Ry, Rz Rotation around specified axis

Scale Scale equally in x, y, and z

Scale x, y, z Scale in the specified axis

Shift x, y, z Shift (translate) in the
specified axis

WLLX, WLLY, WURX, WURY Corners for a window -
lower,left x and y
upper,right x and y

VLLX, VLLY, VURX, VURY Corners for a viewport

Line Draw line to x, y, z

I-love Move to x, y, z

Rectangle, Rectangle3 2 and 3 dimensional rectangle

functional capabilities required for a system to be CORE

compatible. Levels of capability are specified so that even

the low performance graphics systems can achieve a level of

CORE compatibility. The CORE definition is detailed in its

specification of the functions a CORE compatible system must

support. However, it falls far short in defining the

interface to physical devices and in discussing data base

issues.

170

.. ~ ~ ~ ~ ~ ~ ~ ~ ---""Z- --• "" eW d

Even with its inevitable shortcomings, the CORE Standard

* has had a tremendous impact on graphics design and

development. It was the first serious attempt to consolidate

techniques and ideas related to graphic design in such a

fashion that it could be used as a standard to guide future

designs.

The more recent GKS proposed standard addresses the

issue of physical hardware more completely. It provides at

least some data structures support by defining the kind of

data that must be stored regarding workstations, error

conditions, and metafiles. This standard also falls short of

tackling the problem of how to adequately define the software

for the physical hardware interfaces.

The interface area is at once the most difficult, and

possibly the most necessary of all the technical areas to be

solved. Because software developers tend not to develop

hardware and vice versa, there is a natural gulf between the

two due to physical separation. This leads to poor

interfacing, or large volumns of specilized software for each

software/hardware configuration.

Two very recent efforts offer some hope for the future.

One is the definition of the virtual device interface (VDI).

This concept works very similarly to the p-system under

Pascal. In such a system, a theoretical machine is

postulated. All software can be designed to function with

the virtual machine that has been defined. Only a small

portion must then make the final conversion to the real

171

device. The second concept has become a kind of standard due

to its success. The NAPLPS system, which grew out of the

videotext arena, shows promise for standardizing the

communications with graphics hardware.

The NAPLPS system is a communication protocol and was

originally used to transmit videotext information across

telephone lines. The system is not terribly complex, and has

embedded within it the capability to define not only text,

but symbology as well. All data transmitted is in standard

ASCII format.

The beauty of NAPLPS is that it is a concise, hardware

independent, expandable system. It is quite efficient from

the communications standpoint which makes it attractive for

transmitting graphical data at high rates. With proper

encoders and decoders, AN4Y I/O device can use the standard.

This format is being considered by the national standards

committees in both the USA and Canada. It is also becoming

more widely accepted by the practitioners in the field. Most

notable proponents are business firms with much to gain in

the graphics area but little to gain from videotext. Thus it

may become a standard by virtue of its effectivness [Gordon,

1983: 61-66].

The NAPLPS system uses the ASCII character set with

International Standards Organization (ISO) code-extensions.

This technique expands the 128 ASCII character set so that

numerous sets of commands and symbols are available and can

be moved into and out of an 'in use' table. This

172

.WL , i i. , , . ,.

code-extension technique also permits the addition of user

defined sets. Thus the NAPLPS system can be expanded and yet

remain completely consistent with its baseline definition.

This protocol appears to have many of the features

necessary to support true device independence. Systems using

IAPLPS need to have the proper communication links. With

that and the protocol, graphics output devices would truly be

interchangeable. Time will tell if NAPLPS becomes a major

force in the graphics world. As with anything else, vendors

are somewhat hesitant to commit hardware and software

development to it until the final, approved version is

available. But, the promise is there. With proper

development, it may fill the gaps in the CORE and GKS

standards and help produce a complete system for graphics

standards.

Software Techniques to Handle Dialogues

Extensive comments have been made regarding the needs

for the 'human' side of the human/machine interface.

Appendix B discussed the human factors topics at great

length. -Within this discussion were identified critical

areas to be addressed in the implementation of the DESIGNS

dialogue.

The software for the dialocue is based on, and considers

the following areas,

(1) the 'natural language' analogy,

173

(2) the communication of information via the

user/machine interface,

(3) the definition of the dialogue as a language,

(4) the techniques available for 'conversation',

(5) the protection from errors during a 'conversation',
and

(6) the tools available to support the dialogue design.

Throughout this discussion the terms dialogue and

conversation will be used somewhat interchangeably. This

stems from the underlying language analogy that likens the

interchange between user and machine to an interpersonal

conversation. It is this analogy with human to human

exchanges that drives designers of human to machine

conversations to pattern after the familiar form of the

spoken language. It is presumed that this form of exchange

is more readily understood to the user. However, it is

certainly not readily understandable to the machine!!

Artificial intelligence systems deal more heavily with this

issue of natural languages. lith conventional technology,

true natural language exchanges are not practical.

It is reasonable to pattern certain features of the

exchange after interpersonal communications. It is then

necessary to maintain simple rules and vocabulary for the

exchanges, use concepts familiar to the user, and provide for

some extensibility [Van Dam, 1982: 218-219].

The actual communication between the user and the system

is actually defined on multiple levels. The user works

through the provided 'language' to gain a view of the data

174

............................... v-

stored within the system. The language is the window into

capabilities and information contained within the system.

But the overall communication is not at all symmetrical due

to the vast differences between the methodologies used by

human and machine to process information [Martin, 1973: 3-8].

The language is specified in terms of semantic,

syntactic, and lexical characteristics. The semantics of the

dialogue form used describe the functional capabilities of

the system. It specifies what information is necessary to

accomplish the function, and what the result is. In

addition, it determines which functions are in the perview of

the human, and which are those of the machine.

The syntax of the dialogue form characterize the actual

0, exchange between user and system. It defines the 'rules' of

the language, specifying legal input and output sequences.

This is just as the syntax of any language, spoken or

written, defines those constructs which can be correctly and

properly used which the language.

The lexical, or procedural, portion of a language

definition, specifies how input/output primitives are formed.

It comprises the procedural capabilities necessary to

actually accomplish an operation [Martin, 1973: 309, Van Dam,

1982: 210-225].

It is important that the integrity of the conversation

be maintained as it is developing. !hen individuals speak,

they are capable of filtering out erroneous or unrelated

infornption. At least to some extent, the dialogue between

175

.' o' .
* '

',. .. . '" '.". ".".". ."' '," "."."' ',"..-..".,. .",.-. ,'"."-" , .-.", .,' ."•"," . .- . .".•.," - -,

user and computer must be likewise protected from incorrect

data. This is a complicated task and requires some of the

most sophisticated processing techniques available.

E. B. James discusses this issue in terms of

'protective' ware. He describes a layer of software that

logically resides between the user and the actual

communication channel, and filters out undesirable portions

of the conversation. This 'protects' the integrity of the

dialogue and assures that only valid conversation commands

are carried out [James, 1981: 349-350].

'Protective' ware, or bullet proofing of the system

software, is largely a function of the dialogue structure

selected. In general, computer initiated conversations are

easier to protect against errors. When designing the

dialogue structure, error detection and/or correction can be

taken into account. By considering

(1) the psychology of the dialogue format, the
liklihood of errors can be minimized;

(2) the structure of the dialogue, methods of
recognizinn and trapping errors can be developed
within the dialogue framework and the structure can
then aid in error correction;

(3) the extent of error propagation, the dialogue must
bridge the gap bet%%een the real-time conversation
and any resultant actions or created files [James,
1931: 450-462].

A dialogue developed around these principles provides for a

,more graceful degradation should a failure occur.

Looking at the tine sequence of events in an interactive

- system's structure is important. State transition diagrams

176

,~~~~~~~~~~.,-,..... -,. I ,cII- a k -""

AD-RI59 218 THE INTERACTIYE GENERATION OF ALPHANUMERICS AND
SYMBOLOGY WITH DESIGNS ON THE FUTURE(J) AIR FORCE INST
OF TECH WRIOHT-PATTERSON RFB OH SCHOOL OF ENGI.. N

UNCLASSIFIED K A ADAMS JUN 85 AFIT/GCS/MA/95J-2 F/0 91'2

soonhhhhhf

I lmllll.fffff

168 11-

rn.01.

IlUfl==

11.25 11.4 L =.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL GUIAU OF STA14OA*DS - 163 -A

,6

A%

* * *. * *. *. ~ *.* %A

explicitly specify the temporal relationships that exist

within the structure [Jacob, 1983: 28-34; Kieras and Polson,

1983: 103-106]. Such tools, which are relatively simple to

use, can readily define acceptable system states and identify

problems within the dialogue structure.

The Impact of Fourth Generation Languages

A discussion of fourth generation languages (4GLs) is

relevant to this thesis, because DESIGNS can be considered as

a 4GL. The key criterion in defining a 4GL is that the

language supports and improves user productivity. The use of

the term 'language' is actually a bit of a misnomer, as 4GL

systems are not languages in the classical sense [Tufts,

1984; Tharp, 1984: 37). Indeed, they are support

environments for some set of users.

The 4GL systems have evolved from the more traditional

languages. They tend to be less procedural than third

generation languages such as Pascal or FORTRAN. Individual

statements within the 'language' cause more activities to be

initiated than in traditional languages. Thus the

specification for an activity is more concise and, hopefuly,

more natural in form.

The 4GL systems tend to be 'friendly', flexible, and

robust. They make efficient use of the user's time, but not

* necessarily the computer's tine. They are almost exclusively

on-line, interactive systems [Tufts, 1984]. The development

177

ILL .C4--.-

of such systems has normally been undertaken to solve a

specific problem, and to provide a tool for the user.

Examples of such systems include various query systems,

database systems, report generators, and various graphics

output languages.

Within the context of this definition, DESIGNS can be

considered as a 4GL. It meets the criterion, and its primary

goal is to reduce production time required for cockpit

symbology. There are no rigid definitions of a 4GL which

preclude identifying the DESIGNS system as an example of

fourth generation techniques.

Algorithms for Graphical Tools

Textbooks filled with algorithms for graphical

manipulations are commonplace [Foley and Van Dam, 1982;

Newman and Sproull, 1979; Pavlidis, 1982). It Is not the

focus of this thesis effort either to investigate or develop

new algorithmic techniques.

The DESIGNS subset that has been selected for

implementation and testing is more functionally oriented. It

Is a set of tools to manipulate existing symbology to create

display formats. Additional capabilities for the DESIGNS

environment, that are only postulated at this point, will be

more algorith intensive.

Tools which will support the drawing of new symbols from

• primitives, or support the complex image generation require

178

* ,

. ...2. -- ,.

graphics algorithms. In places where special graphics

algorithms are required, available techniques will be used.

179
5!

.1 ,. - - :.; - ,x , ,:,v ,,.,,--,.: ;-::.; .,-,.-, _ -; ...--.--.-.- , , -""".'""'-'":'":" .. •. ., ,, ' ,

'.

A I -.

Appendix D. DESIGNS Top-Level SADT Diagrams

The SADT diagrams contained in this appendix illustrate

the top-level definition of the DESIGNS system. They follow

from the description of functional requirements contained in

the fourth chapter of this thesis. Coupled with the

pseudocode in the following appendix, they provide the reader

with a solid understanding of the project definition.

The SADT diagrams prepared for the DESIGNS definition

phase focused on the functional aspect of the system, and

looked critically at the activities within that system. The

SADT diagrams for the DESIGNS development reflect that point

of view.

As a quick review, the following description tells how

the SADT diagram is used. The box itself represents the

activity of interest. Arrows approaching the box from the

left represent input data, arrows approaching from the top

represent controlling data, and arrows departing to the right

represent output data. The basic concept is that the box

activity tranforms the input data to the output data,

governed by the control information that constrains the

system.

The following SADTs define the important executive

levels of the DESIGNS system.

180

5, ' ' '' ' S*.* * , ,5 , '5 3*

to
UU

a)a

4D-

C

14 U

CkC

Cc,

aa

C -L

'0 E? 0

4-c

4

Lt

FIGURE 27
Entry Level of DESIGNS - System Startup

* 181

Os2 4

c 40

C 0 CLS
00

CC

00

U C

S) m

-D 4.,

CLr

-C-

C C

FIGURE 28
DESIGNS Menu Option Processing

: *.:.':182

L0e

100
CL"

0-0

CL
4-. 0

--
&Owe

u we u

CD 0
0j =l0

Z 0 Or 0

4-. W 4. * %..0.
0~~~~ __ C'oLI LIF J

00

L.L

4-a.

LC

CC

FIGURE 29
DESIGNS Option Selection Processing

183

i2

S •

00

0 E
-to,

.J 4., L,

'EMS 0

"o 4 J

L- S

/a- E /

0LEe

00 0

rm.

00.
a

r- to

a.

=rFIGUREE 0

184

iIG E 3 0 ,
DEIN C nepeecAtvte

u18

Increasing levels of detail exist under each of these

SADT charts. This detail has not been included for two main

reasons. The first is that some of the details, as discussed

in the body of the thesis, have not yet been defined. The

second is that the most important information can be desribed

without including the more mundane levels of detail.

185

Appendix E. DESIGNS Pseudocode

This appendix contains pseudocode for the upper-most,

functional level of the DESIGNS environment definit 4on.

Definitions for every module developed as a part of the

thesis effort are not included here in order to present the

most informative data in a concise manner. Where

appropriate, families of related modules are defined in

general terms. This permits the reader to visualize DESIGNS

as a complete system, without pondering module specific

details.

The software developed for DESIGNS falls ioito six

general categories, which are the:

(1) executive functions of the environment, which
'manage' the entire system and are the routines of
primary interest in the pseudoco~e development,

(2) menu structure and help information, which provide
the portion of the user interface which the user
actually 'sees',

(3) librarian features which provide all access to the
underlying file structures used by the system,

(4) support modules which provide the basic graphics
primitives, Interface through the host operating
system, and other supportive functions,

(5) hardware specific modules which provide the
interface both to the system workstation, and the
various available graphics devices, and

(6) defined symbol sets that have been developed, and
are commonly used within the hosting facility.

The pseudocode contained In this section emphasizes the

first three areas. An understanding of the DESIGNS

186

S- ** - , -. .5 o. " **',S,,-.-, . *. .. . *.- '-; " ." ." - .-" " ," '. - S'2'.

structure, with its important user interface concepts and

librarian features, is necessary. The major functions of the

hardware, support, and symbol sets are enumerated. Since the

pseudocode for individual modules in these areas tend to be

either somewhat repetitive, in the case of symbol sets, or

very machine dependent, in the case of hardware and support

modules, it is not included here.

The mainline module for DESIGNS performs all of the

setup work for the package, invokes the actual DESIGNS

executive module,],d 'cleans up' after the user has

completed the desired job.

The associated data structures for the DESIGNS package

are defined in a single block data structure. The

description of these structures is contained in tne following

block of pseudocode.

"8

p18

'S

S --.. . .

* PURPOSE of subroutine THESIS

-. "*************************** **

* MIAI1line program for DESIGNS development environment. *

* D - esign ! DESIGNS has been developed in *
* E - nvironment ! support of the thesis effort *
* S - upporting the required by the Air Force *
* I - nteractive Institute of Technology (AFIT) *
* G - eneration of to satisfy all the requirements *
* N - alptlumerics & ! for an HS in Computer Systems *
* S - ymbology ! Engineering. (1982-1985) *

* REQUIRED DATA for subroutine THESIS

* - definition for the different picture segments *
* within the DESIGI'S system *
* :common block - Station Pictures *

.* *

* definition of basic workstation parameters such *
: * as intensity levels, character sizing, character *

rotation *
-* :common block - ControlInformation *

- e ************************* ** **

* .PSEUDOCODE for subroutine THESIS

S************************** **

* Initialize the workstation hardware *

* Draw each required DESIGNS help screen *
* Draw the DESIGNS working area - borders, drawing area*
* Draw each required DESIGVS menu screen *

D* *

.* loop until the user wishes to stop using DESIGNS *
* process the DESIGNS options *
* end loop *

* Release the workstation hardware for the next job *

-. 188

. . * . . * '

°. . ..o.'-~*.- - .

,.m.............
.. I A A.~

• PURPOSE of code block BLOCK DATA

S*****.******************** **

• these common blocks are required for the DESIGNS *
* system and are initialized in block data *

• DeviceControl - specifies workstation options *
* -as unit, copy control, on/off,*
• and echoing. *

• Station Pictures - defines picture numbers for *
• - each of the separate pictures *
* within DESIGNS *

• ControlInformation - control data for workstation *
* - attributes such as intensity, *
• character sizes and rotations,*
• line types, etc. *

• VGDefinition - defines the VG graphics *
• - characteristics *

• SymbolTable - contains generic definition *
* - of the display being created *

* PSEUDOCODE for code block BLOCK DATA

• declare ALL variable types *
• initialize ALL data values *

189

The executive module manages all of the DESIGNS

activities. It interprets the selected options and provides

the appropriates response. All error handling and interfaces

to the host operating system are through this main executive

module. Parallel module exist for the various menu levels.

* PURPOSE of subroutine MAINSELECTIONS

* subroutine MAIN SELECTIONS - executive control for *
* - all user interaction with the *
* MAIN menu *

* REQUIRED DATA for subroutine MAINSELECTIONS

* user selection to stop DESIGNS : QuitDesigns *

* workstation definition *
* common block DeviceControl *

* definition of the available picture segments : *
* common block StationPictures *

* attribute information for the workstation *
* common block ControlInformation *

* the generic DESIGNS display list information : *

common block Symbol_Table *

* PSEUDOCODE for subroutine MAINSELECTIONS

S************************** **

* Initialize all control variables *
* turn on required pictures to display the MAIN menu *
* turn off all unnecessary picture segments *

* loop until user decides to quit the DESIGNS system *

190

#

* read the keyboard/joystick Inputs *
.* determine which menu option has been selected *

.* *

• for the case that the option selected is: *

• create a display- *
• Initialize generic display list *
• create the new display *

• modify an existing display- *
• determine which format to be modified *
• display that format on the workstation *
• modify the display *

* store the current display- *
• determine the name for the display *
• store the display list *

• document work- *
• determine which format to be documented*
* document the work *

• assign attributes - *
• determine which symbol(s)/alpha(s) *
• to have dynamic hooks *
• establish dynamic hooks in display list*
• according to the user instructions *

* select a target device- *
* determine which device the user wishes *
• to use *
• interpret generic display list for the *
* specified target *

* dynamic testing- *
• test the current display with *
* representative inputs signals *

• help - *
* provide helpful information specific *
• to the current DESIGNS situation *

* quit - *
* stop the DESIGNS system *

* any invalid option - *
* notify that selection is invalid, try *
* again *

* endcase *
* endloop *

*191

191

J''~... ; ... - :w~-~ ~ W~%% % ~ ' q

PURPOSE of subroutine SYMBOLSELECTIONS

" ** ** *** ** ** ** * *** ** * **** ** *** **** * *** * ** * ***** ** * *** * ***

* subroutine SYMBOLSELECTIONS - executive control for *
* - all user interaction *
* with SYMBOLIC menus *

* REQUIRED DATA for subroutine SYMBOLSELECTIONS

* user selection to stop SYfiBOLIC operations : *
* Quit Symbol *
* attribute information for the workstalion *
* common block ControlInformation *

* the generic DESIGNS display list information : *
* common block SymbolTable *

* PSEUDOCODE for subroutine SYMBOL SELECTIONS

* initialize all control variables *
* turn on required pictures to display SYMBOLIC menus *
* turn off all unnecessary picture segments *

* loop until the user quits the SYMBOL operations *

* read the keyboard/joystick inputs *
* determine which menu option has been selected *

* for the case that the option selected is: *

* any valid symbol - *
* establish default scaling for display list *
* symbol *
* draw the symbol in workstation field of *
* view *
* update generic display list to include new *
* symbol *

* help- *
* provide information specific to current *
* DESIGNS situation *

192

*qut - *- - - -
* stop the DESIGNS system *

% * *

-. * any invalid option
* notify user selection is invalid, try again*

* endcase *

* endloop *

Each unique graphics target has Its own interpretive

section within DESIGNS. While each of these interpreters is

specific to the hardware and software that make upthat

system, the PACER/VG interpreter is 'typical' of the

construcion of such a module.

* PURPOSE of subroutine PACERVGINTERPRETER

* subroutine PACER VG INTERPRETER - mainline module of *
* -- interpretive package for the *
..* PACER/VG graphics system. *

* .

* REQUIRED DATA for subroutine PACERVGINTERPRETER

* definition of the VG graphics system : common block *
* VGDefinition *

* definition of generic display list created during a *
* DESIGNS session : common block SymbolTable *
* *

PSEUDOCODE for subroutine PACER VG INTERPRETER

* loop for the number of modules to be retreived *

* set VG symbol prefix, based on generic DESIGNS *
* display list contents *

193

_ _ ,. . .- , - - ,- - - , . - '* S *. .* . *'. ". ". ** ,-.- •* *'' % . "- * - I- *"% ,= "% -.

-* , * endloop *

* generate complete name list for resultant VG source *

* open the required VG symbol libraries *

* get necessary static/dynamic modules from libraries *

* close all libraries *

The library support features include the following

capabilities:

(1) error handling,

(2) opening and closing of the necessary library files,

(3) reading and writing files,

(4) searching for files,

(5) modifying files to create the required dynamic
links, and

(6) managing the namelist of required symbols
associated with the library.

The general support functions include:

(1) basic graphics primitives such as drawing circle,
arcs, and short vectors,

(2) error handling through the host interface, and

(3) any general support tool required, such as menu
generation.

The hardware support functions referenced here primarily

support the DESIGNS workstation. Other hardware specific

modules are considered part of the target interfaces. The

functions supported in the workstation to date are:

(1) station initialization,

194

*7V

(2) picture segment initialization,

(3) joystick, keyboard, and digitizing tablet

interface,

(4) selective turing on/off of pictures,

(5) 'picking' of picture segments, and

(6) de-allocation of the workstation and its resources.

The basic symbol set on which DESIGNS was based is

common to a wide variety of HUD applications. It Included:

(1) pitch ladder,

(2) fixed reticle and aiming reticle with range bar,

(3) flight path marker,

(4) Instrument Landing System (ILS) bars,

(5) horizon line, and water line markers,

(5) roll indicators,

(6) various forms of scales, and

(7) various commanded path and target information.

Typical of the structural definition of a symbol is the

following definition of the pitch ladder symbology.

S* PURPOSE of subroutine PITCH LADDER

• subroutine PITCH LADDER - part of workstation symbol *
• - set *
• * Draws standard symbolic representation of aircraft *
, * pitch ladder. *

195

REQUIRED DATA for subroutine PITCHLADDER

* x,y coordinates for the symbol center : X Center, *
* Y-Center *
* width of the ladder symbol : Ldder Width *
* height of the ladder symbol : Ladder-Heigh *
* symbol attributes : IntensTty, *
* Scaling *

* PSEUDOCODE for subroutine PITCHLADDER

* set the default values for the symbol attributes *

* map x,y coordinates into workstation viewing space *

* draw the symbol as illustrated: *

* 10 10 *

* 5*

* 0*

* -5 ---- _- -_- -_- -_- - 5 *

* -10 -10 *

196

* . . ° o . . , , ., - ° • i i q ,I "q ".
•

- -•-•
o

•-*° *k
•

•
•

" % " %l

v. - k -- % ;: V - -0 . r -- oA- -,TPX- -X - I -L *-A-X A-Wr . W -

Appendix F DESIGNS User Guide

This user's guide is meant to assist the beginning user

of the DESIGNS environment. It is not, as of this printing,

complete since the facility itself is not yet completed. It

does, however, document those capabilities that currently

function.

The DESIGNS package resides in the Flight Dynamics

Laboratory's simulation facility that is housed within the

Control Synthesis Branch in Building 145, Area B, Wright

Patterson AFB, Ohio. It is hosted on the SEL 32/2750

computer that has been designated as the graphics front-end

processor.

I. In order to use the DESIGNS system, the user must first

log onto the SEL computer. This is accomplished by logging

in under the username 'graphics'. There is no key associated

with the name, so enter a carriage return when a key is

requested.

The logon procedure automatically places the user in the

correct directory to access all available graphics tools,

including DESIGNS. To activate the desired tool, in this

case DESIGNS, enter 'displays' (without the single quotes and

In either upper or lower case) when the standard operating

system prompt is visible.

The prompt line will look like this TSM 0displays

197

* ,~ -* * ~ ~ 1 -- ~~~* *'~ *~ . /~. .

Starting this macro invokes the actual graphics

executive program. The executive displays a menu of

available graphics systems. To use DESIGNS, select the

Megatek B option, which is option 2. The next menu level

that appears contains the list of available software packages

for that particular piece of hardware. This menu level is

set up as a series of pages. As of this time, DESIGNS is

listed on the second page. Therefore to select it, the user

must first go to the next page by selecting 'N' for Next.

The next page of programs is listed and DESIGNS appears as

number 6. Select 6, and DESIGNS will be automatically

started.

It is normal practice at this point to stop the graphics

executive program unless other programs are to be started on

other graphics machines. Therefore select quit from this

menu level which returns the user to the initial hardware

list menu. From here option 0 stops the graphics executive.

This option is taken in order to release the computer

terminal for other use. Since all dialogue between the user

and the DESIGNS system occurs via the Megatek unit itself,

the computer terminal is not used therefore should be

released.

DESIGNS starts by displaying a general 'help' screen in

order to orient the user to the basic forms of communicating

with the system. Once the user has read this, press the

carriage return key on the regatek keyboard to continue. A

short period of time will elapse while the DESIGNS data

198

- . , , . ,, : -. . -.. . ,* .***. .* s...***.. '.*- * .' ,'- I.'I.'. , .'L. * "-. '< I

,4 - ., . - . o _S. _ b ' -, So .' ° °
%

" '-
%

' " L - - . - b _ J" -, I

structures are initialized. When this is complete, the main

menu will appear on the screen.

The main DESIGNS menu, which has been illustrated in

Figure 21, contains all of the top-level functions for

manipulating the generic display list. Selections are made

from this, or any other, menu by one of two methods. The

first method Involves typing in the command from the

keyboard. On the main menu, the command takes the form of

the first word in the menu option. For example, select

'Create Format' by typing in 'create' followed by a carriage

return.

The second method for selecting an option is to position

the cursor by usinj the Hlegatek joystick near the option to

be selected. Once the cursor is positioned, push the button

on top of the vstick tn select the option.

In either casp, if the typed command is incorrect or the

joystick button Is pushed while not near an option, an error

message will be displayed asking the user to re-select. Once

a valid command is selected, the function to be performed is

initiated.

Throughout the DESIGNS system, on-line help can be

accessed by typing a question mark. Information is provided

relevant to the current state of the system. Once the user

has completed using the help information, typing a carriage

return restarts the DESIGNS system at the point at which help

was requested.

199

..: .-,.:....,: :......., .,- a. * b, # S.-,.. S * .-. ... a, € * . , ; - ...

To exit any menu, and return to the menu immediately

preceeding it, the user need only type 'quit'. This always

returns to the calling menu. To stop the DESIGNS system

entirely, the user types 'quit' from the main menu level. At

the conclusion of a session the user-created files are all

saved for use during a later session.

200

-.. j

Appendix G. Requirements for GRAFEXEC

I. Introduction

A. Numerous independent graphics packages currently hosted on
the SEL 32/2750

B. SEL 2750 to be the host for future graphics devices

C. Preliminary software testing for an executive exists -
HIEGOPTSx

D. Addresses training needs by minimizing req's for detailed
graphics knowledge by most users

E. Another step in the development of an integrated graphics
environment

I. Purpose of Executive

A. Provide a consistent interface to the various available
packages

B. Provide extensibility as new packages/hardware are added
to the SEL system

C. Reduce training requirements for end users

III.Functional Requirements of the Graphics Executive

A. Must appear to the user as a single through which other
available options are selected

B. Hlust be capable of selecting options and initiating their
execution in some fashion, as well as terminating their
execution in some fashion

C. Must be able to allocate the target device to be used for
the display

D. Nlust recognize if the designated target is currently
allocated and require confirmation to terminate the previous
graphics package and reallocate the device

E. Ilust release whatever resources it uses for its physical
presentation of the user interface when finished, so that
they are free for other tasks

201

F. Must initialize the target device (clear the screen) and
deallocate devices when a graphics task is terminated

G. Should provide its own error handling, and not confront
the user with the potential of falling into unclear system
error messages

IV. Functional Requirements of the Support Graphics Packages

A. Define a common interface with the executive for control,
data passing, etc.

B. Should not provide an internal mechanism for terminating
its own execution is this prevents the executive from
knowledge that the task is gone and thus devices deallocated

C. Should conform to the standard data structure established
for simulation data passing if it is to be driven by a
simulation

D. Should not assume any of the specified executive roles

V. Implementation Requirements for the Software Developed

A. Hust be compatible with the SEL 32/2750 host

B. Design and implementation should permit unlimited
addition of new capabilities (application programs)
within the existing framework of the executive design.
Additional applications can be made available as options
without regard to memory constraints although there will
be some real limit, both memory and time, as to how many
can execute simultaneously.

C. flust be compatible with shared memory configuration if it
is to communicate with other mainframe software.

202

* .IT

CGt-APHIC :< EXECUI1VE DOCUMENTfATION

i • 1 itrcuLt.:i -,n -- 1 C d, Pkliert descrri be s the '-r, h i c s

executive which inter+aces graphics software packages on the

SEL 3'/- to target hardware devices. The executive enables

a user to activate arv task on any device through a single

program. It also provides the capability to abort tasks if

the desired device has previously been allocated or the user

wishes to change the tasks which are running.

2.0] Disp1!av RoUtine Structure -
/HARDWARE

MENLJ

.~ RAFEXEC , MAINSUB M ENUB:

The pUrpoSe of GRAFEXEC, the main program, is to call

MAINSUP, the hiqhest level subroutine.

2.I SUbL'O1.e - This section describes the function of

eac:h of the GRAFEXEC subroutines.

SI Fi-. ,Ck , - MAlNUL.B - This procedure calls the menu

dislav Sutrjkutir1es an'd acceots the User's input fouO

so-f twar e r-,dwA! U. 1, E f.rd meru control . It then uses th&t

-* ir,. o ' : i , c . .,t.J .. te the choens t&.cl. or to chari~le tht,

.j E . ,4 ;l . L d,t-.; L . ; . .11. t b E-I : r o . a i ds n a i ±i

h i-!],'t ~zr-.r c.i t.(-tniorniat r,.p' aboLttu thC- a.Lti \'E. t r. -

. i... : .! -- C1 1,Ei L.Ia 'a± J at, t. , cIl, t .

203

ii:. 1.i.2 Dut] ,!.! F -,40 -- En integer specifying which pagc-

oQ the s(7 t 0w..re rntu t o display. It is set to one befc,, e i L

I Ea P -E;E to I 1 er lU sAtbroutines.

2.1.2 Procedure - MENUA - This procedure displays the

software options for MEGATEK A. It also provides options to

control which page of the menu to display. At present,

there are five pages and a capability for twenty options.

2.1.2.1 InQuts - PAGENO - an integer specifying which page

of the menLA to display.

2. 1.2-2 OutputtS - None

2.1.3 Frceduktre - MENUP - Same as above for MEGATEK B

2. 1.7.2 ,.t t. -- Sa.e as above

2..1.4 .roc.dUr. - MENI- - Same as above for GAERTNER. At

tresent, however, no options ex'ist.

2. 1.4. I 1np L..t t Same as above

2. .4.2 Outputs -s Sme as above

" .1. F-rcur"L - MENUX - Addi tional menus of the same

4.or -oat is I *NUA. etc. may be incorporated to accomodate thf

a dd i t. ut r ~-w d ~r v ;e.a v - i c&S

. , .h.it5, proce-'dUre dc spi ,/E t-t.

4, cr . .-, l-.r c,...t . >t . ,. t thEn Lccept s the Usc-r E.

. , .. .ru. wt ~t u I]] c1' c t the- d I th s EteI.p .

204

. .;. ,. . . ; ,. ;r;-, . '. "\.. ~ * .. ,,.- ... ,.., -. .., \,... . . * , . * * . . . , S ; , . . . _"
. : :- I - " l . I " i

'
I i l i' - . .

SL C -t 1 + I I .. E.f . U. 1 1Q0

r. _ - : . o . : k, : l L' .

_. e sL .cin de- s w ith the steps nece, ar.

tD e;- p&-u ei the th ha rd. ere or software fbenus.

:.wi EiE.t.r9 So..are rens - Adding additional options or

pa e. All + the stoftware menus have the same format,

therefore these instructions apply to each of them.

3.1.1 Modificatiors to MAINSUB - When a page is added to a

menLk. then the index of the array ENTRIES(X) should be

incremented by 5. The index should be equal to the maximum

number o+ options in any menu, plus four for the page

control entries. For example, if MENUA had 5 pages, and

MENUB had 6' paces. then ENTF'ES(X) would riot have to be

e,- -i ertother page were added to MENUA, because the

a.rr .., i r re nouQgh to sati +Y 6 pages. i4,

a sevei th page were added to either menu, then the

- WL'd h;,Ve I.c be e-.panded. Also, the data for ENTRIES

siu. Ud b: timcii i e. to iniclude the numbers of the new

I,'!~..'. . :,' r ~ v NUMBIUF1S X) should be e'.panded to

i r.. ,. - -the ne.w nLaier (-A: opti or . NUMLIOPTS () ccr esponds

, ~.. t 2_ , : tc -. . b E,.c.'t eq,.w.tJ t(c the total riuLimbEr

C. t . E.-; cj:, I C ,;'1 . 1'r ILJ E V -i tih 0L h CI, t j. c-, r5 s __ .. I a< E,

: oc.Ct c actU l. 1. - ' d r',&

,, i... .4.* ,:,, *,, , i, J Use !, it i- i rnd .:,ed by DE[EL.

,, ., i ,r t- .i orir hi p b .'-twef".rr L L.- ... CE , 1

205

6.~ *.* *,* t,\0.f,~'"'I Y /

N,4 ' = TF,:ASH.

ELSEIF (DEYICE.E&.2) THEN

NAM E T TRA 5HB D

END I F

AC 1VE (DEVICE) =NAME

WRE (7 2),ERR=60, IOSTAT=ISTATW) (ACTIVE (I) ,Il,5)

CALL M:ACI(INiAMEIERRSTAT,$30)

CALL HARDWARE(DEVICEACTIVE)

END SELECT

NOIL: NAMiL is a CHAR*8 variable, INAME an INT*8the two are

equival.Ent. The M:ACTIV call requires an integer

doL[b]eword so INAME is used.

The rew option(s) should be added to the SELECT CASE 1.

ihe I! UL!' rE CH: thk- e , will. be equal to the nuntber o4 the

optl.n C)1us fLukr , fo: pape control. For example, option

'1:' ~WOdi cL. CA e: 1. ', etc. The integer variable NAME.'

- be .Et eO.': t t1 - re qr ,m narre NAME TES]××"

I(l1; , IJ , wi .t r i the -amc &.s w 11 the tat nrer"t

3 ,:i . .;. - &rd tJh, WF :1L statement. I f however

Si E', c:. *:l' t I r ,:.. .1 ' ' t "*l[r, one devi ce thEn r &n

206

-r-I l --I l * *' - -.!-" : -' -" " -r .

. . .. , . the ov, s c-,nwri musi rje. rIc _u::te,:c

S....' 1 ' Eia ta .t i L-. e L We i .

..... . s + LtvlCJ.. a,,d Lhe devices wll1 be discussed iri thi

ThE val ue of LA S1TA*E X i must be set equal to the number

of the last page, number for that particular menu.

LASTPAGE(1) corresponds to MENUA, LASTPAGE(2) to MENUB, etc.

When the array iS used, it is indexed by DEVICE. For an

e;.planation c{ the values of DEVICE, see section 3.1.-

1. 12 Modifications to MENU(X) - Any additional pages

should be created with the same format as those already

existing. The new options should be added next to the

appropriate option number, to coincide with the SELECT CASE

-,,,E--_ , -. v i 4, AJllk;'b (upt ior! 'X " to CASE. 'X+4 ") .

-" The arr II,:, MES. (X,21) must be expanded so that X equals

th rin,..Lter of oaoes in the menu. Also, the added data

statement for MESS sho-ld be of the form DATA (MESS (pageno,

".) * 1= ,:i 2) I v,_, owecd by the page format.

' 1.:: Modi{icetir~s~ .!o HARDWARE - No chanqes need to be,

made to .. r' ir order to change the software ,ienu.

. .I.i.r ,~s;-,.-;, rmaADt.] on shCuld be: provided as to the r l e
.5

ru I v'kL III) lI). DEVICE is an integer variable wr ose

• 3. i.-Lt . . . , 5:. i dw .r e C r I o' '

.. T!j 0 .; C, , . r . '.i: -. to: MEC -FTLK t to ML. CAI Li P,

.. -, ./ . t. - rf .,v 1 C.Ii Lor'tairis the rianTveSC-, cL]. c-

1, i", i .. - .. I ? . F1, tE.: n £ t h e r, mre': of t. hc pr o r .

r i: , . i . . - t '.1 r.;- , .. th e Er p vE4 C.,

. 2 7...

, 207

Me) S, SF hi 0- 1- k. I d bi Er I:-re dC

3 2.1. lc:,, _.d i4L&.Li lo - .ojINUL -- The initial 5o-ftware menu

C: l ;iiL..:t , i d t.o, ictu rc Ude the new menLt.

E; amp e:

IF ()EVICE.ED. I) THEN ! MEGA-EK A

LALL MENUA (PAGENO)

ELSEIF (DEVICE.EQ.2) THEN ! MEGATEK B

CALL MENUB (PAGENO)

LLL1F E' :. IC.E.]HEN ! NLW DEVICE

CAgLL MENLJX iPAGENO) 'NEW MENU

The array LAS'TP-AGE must be expanded to include thelast

pLT 1 4: MENUX

I-+ the si t. nQ -oftware car run or, the new hardw. re.

c, n-i o t are ca.rn run on ex.isting devices, then the

.F:--THI--EL~ ~i~ LOJe ji t , h-e SELECI CASE statement should be

208

Ii- EA E' .FL OR T~.A J A

ELEEiIF' DEY ICL. E.2) THEN !MEGAJTU' El

NA ME ='FORYYB'

ELE3EIF (DEVICE.EO.5) THEN !NEW DEVICE

NAME ='F-OR'T'X' IVERSION OF FORTY FOR NEW DEVICE

E ND I F

E-.. arnple for ntew case:

C A11E X

IF (DEVICE.E0.l) THEN

NAE= '.1lJAS-*: 'NEW SOFTWARE FOR FMEGATEK A

L-,L: Il- (EVICE.El..tO THEN

END IF

..2 1. 1~ipt~ CHOILE, user input

I.. Oytpgkt!i- Ne,4 LASTF-GE Value for flew myenu.

2.2 lc~d ---ct ions to MENUX - The tievi menu can be cOoi

a Im c.E:t ei actlIy 4 rom those e-.-!i sti rtq. The only vChanne LWOtUd

t c, t I-E riam-! -ru thit, .cjailablIe ojt i ors.

I pyf~ E4-LL~'~ 1 Lie

209

3.2. Mc d 4 tions to Har dware - These will be discussed

u nder- the he&d .inc of Addinq New Hardware Options. The user

should keep 3n mind, however, the correspondence between the
I

value of DEVICE and the device chosen, as this is used in

IF-THEN-ELSE statements throughout procedure MAINSUB.

5.2.3.1 Inputs - User choices DEVICE, task names in ACTIVE

3.2.3.2 OUTPUTS - DEVICE

3.3 Adding New Hardware Otions - As new graphics hardware

devices are added to the system, they and their associated

software may be incorporated into the executive.

..3.1 Modifications to MAINSUB - The initial call to the

software menu and the SELECT CASE statement should be

%LIP modified as discussed in section 3.2.1 under Adding Software

If mut~ple pages are added to the HARDWARE menu then

array ACTIVE should be expanded to include the new options.

3.3.1.1 I1npLts - CHOICE - user selections

.1.2 OtP.ts - FAGENO - page of menu to be displayed

3.3.2 Modifications to MENUX - None, except for the

addition of a menu to correspond with the new device.

3..2.i Inpu=ts - FAGENO value

2.2 Outpts - None

, Mcdi .catior to HARDWARE - Add new option to

Acd; new optior to SELECT CASE statement. The only

change will be the device number in the OPEN statement.

210

Ex amp I e:

OFEN (UNIT=9. DEVICE=evice number, IOSTA] =ISTAI,

+ WAIT=.FAL.SE., ERR=99)

If the status of the device (available or unavailable)

cannot be determined with an OPEN statement then another

method must be implemented.

Implement a method to clear the device's screen.

Example:

IF (DEVICE.EQ.1) THEN ! CLEARS MEGATEK A

CALL M:ACTIV('CLRMEGA', ERRSTAT, $30)

ELSEIF (DEVICE.EQ.2) THEN ! CLEARS MEG B

CALL M:ACTIV(VCLRMEGB " , ERRSTAT, $30)

ELSEIF (DEVICE.EQ.Z) THEN ! CLEAR NEW DEVICE

CALL M:ACTIV ('CLRNEW', ERRSTAT9 $30)

ENDIF

If new pages are added to the menu then arrays ACTIVE,

TEMPACTIVE, and INAME must be expanded.

3.7.3.1 Inputs - ACTIVE - array which contains names of

active programs.

DEVICE - index for ACTIVE, corresponds with device numbers

in mentu.

2. OQu+pts - DEVICE - integer, used in MAiNSUB to

activate programs on correct device.

4.0 "VaribleF - This section describes the purpose of each

variable in, the e>xecutive.

211

4.1 Procedure - MAINSUB

LOGICAL NOTFOUND - Controls the DO WHILE (NOfFOUND)

loop. It is set to .TRUE. initially. When a proper choice

is made from the software menus it is set to .FALSE. and

program execution continues.

INTEGER*1 PAGENO - Represents the page of the chosen

software menu to display. It is initialized to '1' when the

program is first activated, then it is controlled by user

selections from the software menus (NEXT PAGE, PREVIOUS

PAGE, BEGINNING).

INTEGER*1 LASTPAGE(5) - This array contains the numbers

of the last pages of each menu. It is used to provide a

wrap-around' capability for menu control. For example, if

PAGENO=1 and PREVIOUS PAGE is selected, then the menu 'wraps

*" around' to the last page.

INTEGER*1 NUMBOPTS(5) - This array contains the number

. of options in each menu. It is used in the DO WHILE

(NOTFOUND) loop which determines if a user selection is

invalid.

INTEGER*1 DEVICE - Passed in from HARDWARE. It is used

to index arrays. Each value corresponds with a hardware

device - '1' for MEGATEK A, ' for MEGAT .. B.etc.

INTEGER*6 INAME - Used in M:ACTIV call, which requires

an integer doubleward. ELui valen rced to 1HAf ACTER*d NAME.

wnich represents the task riame in other c.ses.

CHARACTER*2 CHOICE - Represents the user s choice from

the software menus.

212

- ',

%5 . V-

CHARACI RE Fk-B EN IES 24) - An array containing al1

possible irnpL.t.s ior CHOICE.

CHARACTER*8 NAME - Represents the name of the file to

be activated. Equivalenced to INTEGER*8 INAME.

CHARACTER*8 ACTIVE(6) - An array which contains the

names of the active tasks.

CHARACTER*26 ENTER - Types the message ENTER

SELECTION.;,. to prompt the user.

4.2 Procedure - MENUA

INTEGER*1 PAGENO - Represents the page number of the

menu to dicsplay.

CHARACTER*6:) MESS(5,21) - Contains the format for the

menu. Each page is 21 lines long and 60 characters wide.

4.3 Procedure -- MENUB

INTEGER*1 PAGENO - Same as above.

CHARACTER*60 MESS(5,21) - Same as above.

4.4 Procedure - MENUG

INTEGER*I PAGENO - Same as above.

CHARACTER*60 MESS(5.21) - Same as above.

4.5 Procedre - HARDW RE

CHARACTER*70 OFTS(23) - Contains the format for the

hardware menu. The page is 23 lines long and 70 characters

ide.

CHiRALTLk-7.) LUE5OPTS - Contains the format for the

menu 'when i) device is busy. It is 15 lines long and 70

""ct,,nrect1 r=- wi dL.

, -HAF.4c7IL*b tW1]].'E () - An array which contains the

213

L ~ ,i ~ - ~j~-~- -uw - -:'. - 7 - -7*- -. .. .

C HARCEF*8 TEMPA-_TlVE (6) - Has the same contents as

ACTIVE(6) . It is USEd bPeaUsE input parameters (ACTIVE) to

& subr'outi nre carinot be equivalenced.

INTEGER01 DEVICE - Represents the user's hardware

selection. It is used throughout the program as an array

index.

INTEGER*8 INAME(6) - Represents the task names. It is

used to abort the active tasks.

CHARACTER*26 ENTER - Types the message ENTER

SELECTION. to prompt the user.

LOGICAL OK" - Used in DO WHILE (OK) loop. It is set to

.TRUE. before entering, and then to .FALSE. when a valid

user selection is made.

QSour-re f.or Ex!ecutive - Listed below are the names of

the libraries and compilation macros which are used in

conjunction with the GRAFEXEC. They are located in

directory EXEC.

51.1 GRAFEXEC - Source code is in library EXEC. To compile

use macro COMPEXEC.

1.2 FORF' . - The source code is identical for FORTYA and

FOR7YB and is contained in library PARM. To compile use

eit.ri er COMF-tlE(3 or COF'BMEG. For an explanation of these

see section 5.7.

T,*.#1Lf 114r -- lhe source code is identical for "tRACKi.lA'

end TR'-L,]N anrd is contained in library TRAK. 7'o compI]e

* ;" '.,s ebr LOi'FMEu c, or COMF'BMEG. For an explanation of

t he~ sr.e E¢- t cl, r, , .

' I - lh.- f s c:,:,r c c.- code 3s i der)t: ce] 4 or TERk l NI JA

214"x7 ,. -: ¢- " -; : :d .- i ai :'iv ,:,'..-,..--....... -.... .,-. . .-.-.-.- v *v v.. _. .. .--.v v -v -....... ..,--.....

nd TER ,a' R. ' c' ntai ned i r li brar-y TEF F. Io comx Le

........ F&;'I . r, t L i' MEG F eor n - i. 1 ar' t Cr c f

these see sect i on 5.7.

5.5 DA]AI -- The source +or DATATAB is contained in

library 'LID. lo compile use COMPDTAB.

5.6 MP.D -- The Source for MPD is contained in library MPD.

To compile use COMPMFD.

5.7 COMPAMEG and COMP'BMEQ - To compile any of the parameter

displays for MEGATEK A use COMPAMEG with the following

-f or mat:

COMPAMEG taskname library

For example, to compile FORTYA enter from TSM:

CDMPAMEB FORTYA PARM

To compile any of the parameter displays for MEGATEK B

use COMPBMEG with the same format. For example, to compile

TRACFINB- enter from TSM:

COMPBMEG TRACKlNB TRAK.

215

ezi _Z..

i 4 . .

VITA

rs. Karyl A. Adams was born 8 January 1952 in Urbana,

Ohio. She was graduated as the salutatorian of the class of

1970 from Urbana High School. She recieved the degree of

Bachelor of Science in Electrical Engineering from Ohio

Nlorthern University in 1,1ay 1975. Following graduation, Ms.

Adams was selected as an Olin Fellow at tlashington University

in St. Louis, Missouri and was enrolled in the graduate

biomedical engineering program. She became a civil service

employee in January 1976 with the Air Force Flight Dynamics

Laboratory at Wright Patterson AFB, Ohio. While with the

laboratory, she has been responsible for numerous software

development efforts in support of research simulation

programs. She has been project leader for the Total Aircrew

U1orkload Study (TAIS), the KC-135 Tanker Avionics and Aircrew

Complement Evaluation (TAACE), and the X-29 demonstrator

program. In her current position, Ms. Adams is team leader

for a group of engineers designing and implementing graphics

software in support of the entire simulation facility. She

completed the master's program as a part-time student at AFIT

while continuing her work within the laboratory.

[Is. Adams was selected to the national women's

scholastic honorary, Mortarboard, in 1975. She was selected

as the outstanding Scientist and Engineer within the Flight

Dynamics Laboratory in 1978. She is listed in Outstanding

216

; ; . ; *, ..* .i,.....-.*.......-;..-..--.,..**,
.*~~~~~ ~~~ ~~~~ % . . * *. *~ ... ***

Young Women of America, the premier edition of Who's Who in

Frontier Science and Engineering, 1984/85, and the

International Who's Who in Engineering, 1985.

Permanent Address: 7578 Mt Hood

Huber Heights, Ohio 45424

217

_UNCLASSIFI ED
7 CUVAITY CLASSI F CATION Or, THIS PAGE

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

U1NQ ASCI FT Ffl_____________________
:?i. SE CURITY CLASSIFICATION AUTH4ORI TY 3. DISTRIBUTION/A VAILABILITY OF REPORT

Zh.DECASSFICTIO/DWNGAOIG SHEDLEApproved for public release;
~. OCLASIFCATON/OWNRADNG CHEULEdistribution unl imi ted

t. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMGER(IS

AFIT/GCS/MA/85J- 2

6&. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7&. NAME OP MONITORING ORGANIZATION

School of Engineering IAH'TEgNC
fC. ADDRESS (City. State end ZIP Code) lb. ADDRESS (City. SUan.d ZIP CodeI

JAir Force Institute of Technology
Wright Patterson AFB, Ohio 45433

So. NAME Of FUNDING/SPONSORING 8Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
* ORGANIZATION j(If eplieabte)

Control Synthesis Branch IAFWAL/FIGD
Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
Air Force Wright Aeronautical Labs ELIEMENT NO. NO.NON.
Wright Patterson AFB, Ohio 45433

11. TITLE (Include Security Claaslgiealioni

%p Rnx 19 _

*12. PERSONAL AUTHOR(S)

Vaulv A _ArIam.
13o, TYPE OF REPORT 13b. TIME COVERIED 14. DTFRSPORT IYV o. ~y S P~NT

MS Thesis FROM ____ TO ___ t'% June ' " S U

16. SUPPLEMENTARY NOTATION

17 COSATI CODES IS. SUBJECT ThERMS (Continue on r.ueree iateesary and idmntify by block number)

*FIELD I GROUP - SUB. GA. IGraphics, Support Environments, Automated Software
10 BSRCT(ona4eo Graphics Design Environment, Real-time Simulation

It. BSTACT(Cotine onorvrm f ncenwryand identify by block R&,.ber)

* Title: A DISPLAY ENVIRONMENT SUPPORTING THE INTERACTIVE GENERATION
OF

ALPHANUMERICS AND SYMBOLOGY
WITH

* DESIGNS ON THE FUTURE

Thesis Chairman: Charles Richard 4r5*W If r d 0-
I" IesetchandProtesslonal D.,dqinA*

Ali Force Institute, oi Technology (AT1
Wlgt-Pttetson APE QH 46434

-20. DISTRIGUTIONAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

LINCLASSIFIED/UNLIMITEOflQ SAME AS APT C DTIC USERS3 C3 UNCLASSI FIED
22s. NAME OF RESPONSIBLE INDIVIDUAL 22ba TELEPHONE NUMBER 122c OFF'CIE SYMBOL

Chailles Richard, Associate Professor AFnlueT/ENCCdr

00 FORM 1473, 83 APR EDITION OF I JAN ?3 IS OBSOLETE. iUftCAuI EiD ..
SECURITY CLASSIFICATION OF ?tI-I PAGE

UNCLASSIFIED
SICUmITY CLASSIFICATION OF THIS PAGE

Abstract

This development effort investigated the available

methods for Implementing human-computer Interfaces using

sophisticated graphics systems, with the goal of designing

and implementing an advanced graphics development

environment. Such a developmental laboratory is necessary to

support current and futuristic crew station design for

display-oriented cockpits. The result of theis effort was

the development system - DESIGNS.

The DESIGNS software system was tailored specifically

for real-time, pilot-in-the-loop, research and development

simulation. Critical features of such a system include fast

turn-around time, and the capability to expand as enhanced

tools are developed.

The resulting system supports Interactive development of

heads-up and heads-down display symbology. It generates

correct display formatting information for multiple target

graphics devices. Future enhancements include rehosting to a

more powerful workstation, preferably in Ada, and continued

addition of graphics development tools supporting simulation

needs.

*~~~~~SCRT - ~;..~;x . ~ ' CLASSIFICAIO OF =1415 PAGE

FILMED

11-85

DTlC

